論文の概要: Quantum-inspired algorithm for simulating viral response
- arxiv url: http://arxiv.org/abs/2506.15671v1
- Date: Wed, 18 Jun 2025 17:51:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-19 19:35:51.774141
- Title: Quantum-inspired algorithm for simulating viral response
- Title(参考訳): ウイルス応答シミュレーションのための量子インスピレーションアルゴリズム
- Authors: D. O. Konina, D. I. Korbashov, I. V. Kovalchuk, A. A. Nizamieva, D. A. Chermoshentsev, A. K. Fedorov,
- Abstract要約: 本稿では、量子インスパイアされた最適化アルゴリズムを適用し、バイラル応答をシミュレートする概念実証研究を提案する。
ホスト応答における遺伝子活動のパターンを記述するためにIsing型モデルを定式化する。
この問題に対する量子インスパイアされた最適化アルゴリズムの適用を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the properties of biological systems is an exciting avenue for applying advanced approaches to solving corresponding computational tasks. A specific class of problems that arises in the resolution of biological challenges is optimization. In this work, we present the results of a proof-of-concept study that applies a quantum-inspired optimization algorithm to simulate a viral response. We formulate an Ising-type model to describe the patterns of gene activity in host responses. Reducing the problem to the Ising form allows the use of available quantum and quantum-inspired optimization tools. We demonstrate the application of a quantum-inspired optimization algorithm to this problem. Our study paves the way for exploring the full potential of quantum and quantum-inspired optimization tools in biological applications.
- Abstract(参考訳): 生物学的システムの特性を理解することは、対応する計算課題を解決するための高度なアプローチを適用するためのエキサイティングな方法である。
生物学的課題の解決に生じる問題の特定のクラスは最適化である。
本研究では,ウイルス応答のシミュレートに量子インスパイアされた最適化アルゴリズムを適用した概念実証実験の結果を示す。
ホスト応答における遺伝子活動のパターンを記述するためにIsing型モデルを定式化する。
問題をIsing形式に還元することで、利用可能な量子および量子にインスパイアされた最適化ツールを使用することができる。
この問題に対する量子インスパイアされた最適化アルゴリズムの適用を実証する。
我々の研究は、生体応用における量子および量子に着想を得た最適化ツールの可能性を探求する道を開いた。
関連論文リスト
- Quantum Simulation-Based Optimization of a Cooling System [0.0]
量子アルゴリズムは、数値シミュレーションに関連する特定のタスクに対して指数的なスピードアップを約束する。
しかし、量子コンピュータのデータ入力と出力を考えると、これらの利点はすぐに消える。
最近導入されたQuantum Simulation-Based Optimization (QuSO)は、より大規模な最適化の中でシミュレーションをサブプロブレムとして扱う。
論文 参考訳(メタデータ) (2025-04-21T21:58:21Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - Surrogate-guided optimization in quantum networks [0.9148747049384086]
量子通信ネットワークの設計と性能を改善する最適化アルゴリズムを提案する。
我々のフレームワークは、サロゲート支援最適化を既存の量子ネットワークシミュレータと統合することで、より包括的な量子ネットワーク研究を可能にする。
論文 参考訳(メタデータ) (2024-07-24T11:55:18Z) - Quantum-Inspired Genetic Algorithm for Designing Planar Multilayer Photonic Structure [40.27913742030096]
量子アルゴリズムは、機能性材料の設計における新しいツールである。
量子コンピューティングリソースの高価格と成長するコンピューティングニーズのバランスをとる方法は、解決すべき緊急の問題となっている。
改良された量子遺伝的アルゴリズム(QGA)と機械学習サロゲートモデル回帰を組み合わせた能動的学習方式に基づく新しい最適化手法を提案する。
論文 参考訳(メタデータ) (2024-05-08T03:03:10Z) - Solving reaction dynamics with quantum computing algorithms [42.408991654684876]
線形応答によって支配される異なる反応を記述することに関連する応答関数の量子アルゴリズムについて検討する。
我々は原子核物理学の応用に焦点をあて、格子上の量子ビット効率のマッピングを検討し、現実的な散乱シミュレーションに必要な大量の量を効率的に表現することができる。
論文 参考訳(メタデータ) (2024-03-30T00:21:46Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
論文 参考訳(メタデータ) (2023-06-15T15:28:12Z) - Polynomial unconstrained binary optimisation inspired by optical
simulation [52.11703556419582]
制約のないバイナリ最適化の問題を解決するために,光コヒーレントIsingマシンにヒントを得たアルゴリズムを提案する。
提案アルゴリズムを既存のPUBOアルゴリズムに対してベンチマークし,その優れた性能を観察する。
タンパク質の折り畳み問題や量子化学問題へのアルゴリズムの適用は、PUBO問題による電子構造問題の近似の欠点に光を当てる。
論文 参考訳(メタデータ) (2021-06-24T16:39:31Z) - Resource-efficient encoding algorithm for variational bosonic quantum
simulations [0.0]
量子コンピューティングのノイズ中間スケール量子(NISQ)時代には、量子資源は限られている。
ボゾン基底と励起状態計算のための資源効率のよい量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-23T19:00:05Z) - Hybrid Quantum Computing -- Tabu Search Algorithm for Partitioning
Problems: preliminary study on the Traveling Salesman Problem [0.8434687648198277]
本稿では,ハイブリッド量子コンピューティング - Tabu Search Algorithm と呼ばれる新しい解法を提案する。
提案手法の主な運用柱は、量子資源へのアクセスの制御の強化と、収益性のないアクセスの大幅な削減である。
論文 参考訳(メタデータ) (2020-12-09T11:21:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。