Fair Contracts in Principal-Agent Games with Heterogeneous Types
- URL: http://arxiv.org/abs/2506.15887v1
- Date: Wed, 18 Jun 2025 21:25:31 GMT
- Title: Fair Contracts in Principal-Agent Games with Heterogeneous Types
- Authors: Jakub Tłuczek, Victor Villin, Christos Dimitrakakis,
- Abstract summary: We show that a fairness-aware principal can learn homogeneous linear contracts that equalize outcomes across agents in a sequential social dilemma.<n>Results demonstrate that it is possible to promote equity and stability in the system while preserving overall performance.
- Score: 2.2257399538053817
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fairness is desirable yet challenging to achieve within multi-agent systems, especially when agents differ in latent traits that affect their abilities. This hidden heterogeneity often leads to unequal distributions of wealth, even when agents operate under the same rules. Motivated by real-world examples, we propose a framework based on repeated principal-agent games, where a principal, who also can be seen as a player of the game, learns to offer adaptive contracts to agents. By leveraging a simple yet powerful contract structure, we show that a fairness-aware principal can learn homogeneous linear contracts that equalize outcomes across agents in a sequential social dilemma. Importantly, this fairness does not come at the cost of efficiency: our results demonstrate that it is possible to promote equity and stability in the system while preserving overall performance.
Related papers
- Fairness in Agentic AI: A Unified Framework for Ethical and Equitable Multi-Agent System [0.0]
This paper introduces a novel framework where fairness is treated as a dynamic, emergent property of agent interactions.<n>The framework integrates fairness constraints, bias mitigation strategies, and incentive mechanisms to align autonomous agent behaviors with societal values.
arXiv Detail & Related papers (2025-02-11T04:42:00Z) - Using Protected Attributes to Consider Fairness in Multi-Agent Systems [7.061167083587786]
Fairness in Multi-Agent Systems (MAS) depends on various factors, including the system's governing rules, the behaviour of the agents, and their characteristics.
We take inspiration from the work on algorithmic fairness, which addresses bias in machine learning-based decision-making.
We adapt fairness metrics from the algorithmic fairness literature to the multi-agent setting, where self-interested agents interact within an environment.
arXiv Detail & Related papers (2024-10-16T08:12:01Z) - Incentivized Learning in Principal-Agent Bandit Games [62.41639598376539]
This work considers a repeated principal-agent bandit game, where the principal can only interact with her environment through the agent.
The principal can influence the agent's decisions by offering incentives which add up to his rewards.
We present nearly optimal learning algorithms for the principal's regret in both multi-armed and linear contextual settings.
arXiv Detail & Related papers (2024-03-06T16:00:46Z) - Robust and Performance Incentivizing Algorithms for Multi-Armed Bandits with Strategic Agents [52.75161794035767]
We introduce a class of bandit algorithms that meet the two objectives of performance incentivization and robustness simultaneously.<n>We show that settings where the principal has no information about the arms' performance characteristics can be handled by combining ideas from second price auctions with our algorithms.
arXiv Detail & Related papers (2023-12-13T06:54:49Z) - Stochastic Market Games [10.979093424231532]
We propose to utilize market forces to provide incentives for agents to become cooperative.
As demonstrated in an iterated version of the Prisoner's Dilemma, the proposed market formulation can change the dynamics of the game.
We empirically find that the presence of markets can improve both the overall result and agent individual returns via their trading activities.
arXiv Detail & Related papers (2022-07-15T10:37:16Z) - Towards Equal Opportunity Fairness through Adversarial Learning [64.45845091719002]
Adversarial training is a common approach for bias mitigation in natural language processing.
We propose an augmented discriminator for adversarial training, which takes the target class as input to create richer features.
arXiv Detail & Related papers (2022-03-12T02:22:58Z) - Unfairness Despite Awareness: Group-Fair Classification with Strategic
Agents [37.31138342300617]
We show that strategic agents may possess both the ability and the incentive to manipulate an observed feature vector in order to attain a more favorable outcome.
We further demonstrate that both the increased selectiveness of the fair classifier, and consequently the loss of fairness, arises when performing fair learning on domains in which the advantaged group is overrepresented.
arXiv Detail & Related papers (2021-12-06T02:42:43Z) - Robust Allocations with Diversity Constraints [65.3799850959513]
We show that the Nash Welfare rule that maximizes product of agent values is uniquely positioned to be robust when diversity constraints are introduced.
We also show that the guarantees achieved by Nash Welfare are nearly optimal within a widely studied class of allocation rules.
arXiv Detail & Related papers (2021-09-30T11:09:31Z) - Fairness for Cooperative Multi-Agent Learning with Equivariant Policies [24.92668968807012]
We study fairness through the lens of cooperative multi-agent learning.
We introduce team fairness, a group-based fairness measure for multi-agent learning.
We then incorporate team fairness into policy optimization.
arXiv Detail & Related papers (2021-06-10T13:17:46Z) - Learning to Incentivize Other Learning Agents [73.03133692589532]
We show how to equip RL agents with the ability to give rewards directly to other agents, using a learned incentive function.
Such agents significantly outperform standard RL and opponent-shaping agents in challenging general-sum Markov games.
Our work points toward more opportunities and challenges along the path to ensure the common good in a multi-agent future.
arXiv Detail & Related papers (2020-06-10T20:12:38Z) - Randomized Entity-wise Factorization for Multi-Agent Reinforcement
Learning [59.62721526353915]
Multi-agent settings in the real world often involve tasks with varying types and quantities of agents and non-agent entities.
Our method aims to leverage these commonalities by asking the question: What is the expected utility of each agent when only considering a randomly selected sub-group of its observed entities?''
arXiv Detail & Related papers (2020-06-07T18:28:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.