論文の概要: DISCIE -- Discriminative Closed Information Extraction
- arxiv url: http://arxiv.org/abs/2506.16348v1
- Date: Thu, 19 Jun 2025 14:24:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 19:00:05.111869
- Title: DISCIE -- Discriminative Closed Information Extraction
- Title(参考訳): DISCIE -- 識別的閉鎖情報抽出
- Authors: Cedric Möller, Ricardo Usbeck,
- Abstract要約: 本手法では,関係抽出精度を向上させるために,タイプ情報とエンティティ固有情報を組み合わせた識別手法を用いる。
特に、この手法は最先端のエンドツーエンド生成モデルと比較して優れた性能を示す。
- 参考スコア(独自算出の注目度): 6.731053352452566
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a novel method for closed information extraction. The method employs a discriminative approach that incorporates type and entity-specific information to improve relation extraction accuracy, particularly benefiting long-tail relations. Notably, this method demonstrates superior performance compared to state-of-the-art end-to-end generative models. This is especially evident for the problem of large-scale closed information extraction where we are confronted with millions of entities and hundreds of relations. Furthermore, we emphasize the efficiency aspect by leveraging smaller models. In particular, the integration of type-information proves instrumental in achieving performance levels on par with or surpassing those of a larger generative model. This advancement holds promise for more accurate and efficient information extraction techniques.
- Abstract(参考訳): 本稿では,閉じた情報抽出のための新しい手法を提案する。
この方法は、タイプやエンティティ固有の情報を取り入れた識別的アプローチを用いて、関係抽出の精度を向上し、特にロングテール関係の恩恵を受ける。
特に、この手法は最先端のエンドツーエンド生成モデルと比較して優れた性能を示す。
これは、何百万ものエンティティや何百もの関係に直面する大規模クローズド情報抽出の問題に特に顕著である。
さらに、我々はより小さなモデルを活用することで効率の面を強調した。
特に、型情報の統合は、より大きな生成モデルと同等以上のパフォーマンスレベルを達成するのに役立ちます。
この進歩により、より正確で効率的な情報抽出技術が期待できる。
関連論文リスト
- SynerGraph: An Integrated Graph Convolution Network for Multimodal Recommendation [1.3812010983144802]
本稿では,マルチモーダルデータの統合と浄化に焦点をあてた,マルチモーダルレコメンデーションシステムに対する新しいアプローチを提案する。
各種データからノイズを除去するフィルタを開発し,提案手法の信頼性を高めた。
我々は、各データセットに対するトップKスパリフィケーションの影響を調査し、不適合と過適合のバランスをとる最適な値を発見した。
論文 参考訳(メタデータ) (2024-05-29T12:18:32Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
機械学習の最近の進歩は、情報抽出の分野に大きな影響を与えている。
タスクをエンティティ中心にすることで、さまざまなメトリクスの使用を可能にします。
我々は、Structured Entity extractを導入し、Adroximate Entity Set OverlaPメトリックを提案し、この分野にコントリビュートします。
論文 参考訳(メタデータ) (2024-02-06T22:15:09Z) - Erasing Undesirable Influence in Diffusion Models [51.225365010401006]
拡散モデルは高品質な画像を生成するのに非常に効果的であるが、NSFW(職場では安全ではない)コンテンツの意図しない生成のようなリスクを引き起こす。
本研究では,データに関連付けられた不要な情報を取り除き,保存データに対する拡散モデルの実用性を維持するために設計されたアルゴリズムであるEraseDiffを紹介する。
論文 参考訳(メタデータ) (2024-01-11T09:30:36Z) - Leveraging Knowledge Graph Embeddings to Enhance Contextual
Representations for Relation Extraction [0.0]
コーパススケールに事前学習した知識グラフを組み込んだ文レベルの文脈表現への関係抽出手法を提案する。
提案手法の有望かつ非常に興味深い結果を示す一連の実験を行った。
論文 参考訳(メタデータ) (2023-06-07T07:15:20Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - Representation Learning for Weakly Supervised Relation Extraction [19.689433249830465]
本論文では、分散テキスト表現機能を学ぶための教師なし事前学習モデルをいくつか提示する。
実験により,従来の手作りの特徴と組み合わせることで,関係抽出のためのロジスティック分類モデルの性能が向上することが実証された。
論文 参考訳(メタデータ) (2021-04-10T12:22:25Z) - Type-augmented Relation Prediction in Knowledge Graphs [65.88395564516115]
本稿では,タイプ情報とインスタンスレベルの情報の両方を関係予測に適用するタイプ拡張関係予測(TaRP)手法を提案する。
提案手法は,4つのベンチマークデータセット上での最先端手法よりも高い性能を実現する。
論文 参考訳(メタデータ) (2020-09-16T21:14:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。