Improving the lifetime of aluminum-based superconducting qubits through atomic layer etching and deposition
- URL: http://arxiv.org/abs/2506.17474v1
- Date: Fri, 20 Jun 2025 20:41:53 GMT
- Title: Improving the lifetime of aluminum-based superconducting qubits through atomic layer etching and deposition
- Authors: Neha Mahuli, Joaquin Minguzzi, Jiansong Gao, Rachel Resnick, Sandra Diez, Cosmic Raj, Guillaume Marcaud, Matthew Hunt, Loren Swenson, Jefferson Rose, Oskar Painter, Ignace Jarrige,
- Abstract summary: We present a dry surface treatment combining atomic layer etching and deposition (ALE and ALD) to mitigate dielectric loss in superconducting quantum devices formed from aluminum thin films on silicon.<n>We measure a two-fold reduction in loss attributed to two-level system absorption in treated aluminum-based resonators and planar transmon qubits.
- Score: 0.11785699115424035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a dry surface treatment combining atomic layer etching and deposition (ALE and ALD) to mitigate dielectric loss in fully fabricated superconducting quantum devices formed from aluminum thin films on silicon. The treatment, performed as a final processing step prior to device packaging, starts by conformally removing the native metal oxide and fabrication residues from the exposed surfaces through ALE before \textit{in situ} encapsulating the metal surfaces with a thin dielectric layer using ALD. We measure a two-fold reduction in loss attributed to two-level system (TLS) absorption in treated aluminum-based resonators and planar transmon qubits. Treated transmons with compact capacitor plates and gaps achieve median $Q$ and $T_1$ values of $3.69 \pm 0.42 \times 10^6$ and $196 \pm 22$~$\mu$s, respectively. These improvements were found to be sustained over several months. We discuss how the combination of ALE and ALD reverses fabrication-induced surface damages to significantly and durably improve device performance via a reduction of the TLS defect density in the capacitive elements.
Related papers
- Single photon emitters in monolayer semiconductors coupled to transition metal dichalcogenide nanoantennas on silica and gold substrates [49.87501877273686]
Transition metal dichalcogenide (TMD) single photon emitters offer numerous advantages to quantum information applications.
Traditional materials used for the fabrication of nanoresonators, such as silicon or gallium phosphide (GaP), often require a high refractive index substrate.
Here, we use nanoantennas (NAs) fabricated from multilayer TMDs, which allow complete flexibility with the choice of substrate.
arXiv Detail & Related papers (2024-08-02T07:44:29Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Characterization of process-related interfacial dielectric loss in
aluminum-on-silicon by resonator microwave measurements, materials analysis,
and imaging [0.0]
We investigate the influence of the fabrication process on dielectric loss in aluminum-on-silicon superconducting coplanar waveguide resonators.
These devices are essential components in superconducting quantum processors.
We identify the relative importance of reducing loss at the substrate-metal and the substrate-air interfaces.
arXiv Detail & Related papers (2024-03-01T18:16:28Z) - Reducing two-level system dissipations in 3D superconducting Niobium
resonators by atomic layer deposition and high temperature heat treatment [4.520721347047517]
We demonstrate the reduction of two-level system losses in three-dimensional superconducting radio frequency (SRF) niobium resonators by atomic layer deposition (ALD) of a 10 nm aluminum oxide Al2O3 thin films.
We witness a dissolution of niobium native oxides and the modification of the Al2O3-Nb interface.
arXiv Detail & Related papers (2024-02-06T16:40:52Z) - Mitigation of interfacial dielectric loss in aluminum-on-silicon
superconducting qubits [0.0]
We demonstrate aluminum-on-Silicon planar transmon qubits with time-averaged energy relaxation times of up to $270,mu s$, corresponding to Q = 5 million, and a highest observed value of $501,mu s$.
The mitigation of loss is achieved by reducing the presence of oxide, a known host of defects, near the substrate-metal interface.
arXiv Detail & Related papers (2023-10-10T17:08:59Z) - Improved Coherence in Optically-Defined Niobium Trilayer Junction Qubits [45.786749852292246]
Niobium offers the benefit of increased operating temperatures and frequencies for superconducting devices.
We revisit niobium trilayer junctions and fabricate all-niobium transmons using only optical lithography.
We characterize devices in the microwave domain, measuring coherence times up to $62mu$s and an average qubit quality factor above $105$.
arXiv Detail & Related papers (2023-06-09T13:26:13Z) - Microwave loss characterization using multi-mode superconducting
resonators [0.0]
We introduce a method to measure the microwave losses of materials and interfaces with a single multi-mode superconducting resonator.
We present two types of multi-mode superconducting resonators for the study of bulk superconductors.
arXiv Detail & Related papers (2023-05-03T03:10:41Z) - Systematic Improvements in Transmon Qubit Coherence Enabled by Niobium
Surface Encapsulation [25.617374322523048]
We present a novel transmon qubit fabrication technique that yields systematic improvements in relaxation times.
We fabricate devices using an encapsulation strategy that involves passivating the surface of niobium.
arXiv Detail & Related papers (2023-04-26T02:59:28Z) - Ternary Metal Oxide Substrates for Superconducting Circuits [65.60958948226929]
Substrate material imperfections and surface losses are one of the major factors limiting superconducting quantum circuitry from reaching the scale and complexity required to build a practicable quantum computer.
Here, we examine two ternary metal oxide materials, spinel (MgAl2O4) and lanthanum aluminate (LaAlO3), with a focus on surface and interface characterization and preparation.
arXiv Detail & Related papers (2022-01-17T06:10:15Z) - In-situ bandaged Josephson junctions for superconducting quantum
processors [101.18253437732933]
Shadow evaporation is commonly used to micro-fabricate the key element of superconducting qubits - the Josephson junction.
Here, we present an improved shadow evaporation technique allowing one to fabricate sub-micrometer-sized Josephson junctions together with bandage layers in a single lithography step.
arXiv Detail & Related papers (2021-01-05T11:08:09Z) - Microscopic Relaxation Channels in Materials for Superconducting Qubits [76.84500123816078]
We show correlations between $T_$ and grain size, enhanced oxygen diffusion along grain boundaries, and concentration of suboxides near the surface.
Physical mechanisms connect these microscopic properties to residual surface resistance and $T_$ through losses arising from the grain boundaries and from defects in the suboxides.
This comprehensive approach to understanding qubit decoherence charts a pathway for materials-driven improvements of superconducting qubit performance.
arXiv Detail & Related papers (2020-04-06T18:01:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.