論文の概要: Benchmarking Foundation Models and Parameter-Efficient Fine-Tuning for Prognosis Prediction in Medical Imaging
- arxiv url: http://arxiv.org/abs/2506.18434v2
- Date: Wed, 05 Nov 2025 09:33:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-06 20:32:09.39156
- Title: Benchmarking Foundation Models and Parameter-Efficient Fine-Tuning for Prognosis Prediction in Medical Imaging
- Title(参考訳): 医用画像の予後予測のためのベンチマーク基礎モデルとパラメータ効率の良いファインチューニング
- Authors: Filippo Ruffini, Elena Mulero Ayllon, Linlin Shen, Paolo Soda, Valerio Guarrasi,
- Abstract要約: 本研究では,基礎モデルにおける伝達学習戦略の堅牢性と効率性を評価するための最初の構造化されたベンチマークを紹介する。
新型コロナウイルス(COVID-19)の胸部X線データセットが4つ使用されており、死亡率、重症度、入院率をカバーしている。
一般またはバイオメディカルデータセットで事前訓練されたImageNetとFMで事前訓練されたCNNは、完全な微調整、線形探索、パラメータ効率のよい手法を用いて適応された。
- 参考スコア(独自算出の注目度): 40.35825564674249
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite the significant potential of Foundation Models (FMs) in medical imaging, their application to prognosis prediction remains challenging due to data scarcity, class imbalance, and task complexity, which limit their clinical adoption. This study introduces the first structured benchmark to assess the robustness and efficiency of transfer learning strategies for FMs compared with convolutional neural networks (CNNs) in predicting COVID-19 patient outcomes from chest X-rays. The goal is to systematically compare finetuning strategies, both classical and parameter efficient, under realistic clinical constraints related to data scarcity and class imbalance, offering empirical guidance for AI deployment in clinical workflows. Four publicly available COVID-19 chest X-ray datasets were used, covering mortality, severity, and ICU admission, with varying sample sizes and class imbalances. CNNs pretrained on ImageNet and FMs pretrained on general or biomedical datasets were adapted using full finetuning, linear probing, and parameter-efficient methods. Models were evaluated under full data and few shot regimes using the Matthews Correlation Coefficient (MCC) and Precision Recall AUC (PR-AUC), with cross validation and class weighted losses. CNNs with full fine-tuning performed robustly on small, imbalanced datasets, while FMs with Parameter-Efficient Fine-Tuning (PEFT), particularly LoRA and BitFit, achieved competitive results on larger datasets. Severe class imbalance degraded PEFT performance, whereas balanced data mitigated this effect. In few-shot settings, FMs showed limited generalization, with linear probing yielding the most stable results. No single fine-tuning strategy proved universally optimal: CNNs remain dependable for low-resource scenarios, whereas FMs benefit from parameter-efficient methods when data are sufficient.
- Abstract(参考訳): 医療画像におけるファンデーションモデル(FM)の有意な可能性にもかかわらず、その予後予測への応用は、データ不足、クラス不均衡、タスクの複雑さにより、依然として困難であり、臨床応用が制限されている。
コンボリューションニューラルネットワーク (CNN) と比較して, FMの移動学習戦略の堅牢性および効率性を評価するために, 胸部X線による新型コロナウイルス患者の予後を予測するための最初の構造化されたベンチマークを紹介する。
目標は、古典的かつパラメータ的両方の微調整戦略を、データ不足とクラス不均衡に関連する現実的な臨床制約の下で体系的に比較し、臨床ワークフローにおけるAIデプロイメントの実証的なガイダンスを提供することである。
新型コロナウイルス(COVID-19)の胸部X線データセットが4つ使用され、死亡率、重症度、ICUの入院をカバーした。
一般またはバイオメディカルデータセットで事前訓練されたImageNetとFMで事前訓練されたCNNは、完全な微調整、線形探索、パラメータ効率のよい手法を用いて適応された。
モデルとして, マシューズ相関係数 (MCC) と精密リコールAUC (PR-AUC) を用いて, クロスバリデーションとクラス重み付き損失を用いて, 全データで評価した。
完全な微調整を備えたCNNは、小さな不均衡なデータセットで堅牢に動作し、パラメータ効率の良い微調整(PEFT)を持つFMは、特にLoRAとBitFitは、より大きなデータセットで競合する結果を得た。
重度のクラス不均衡はPEFTの性能を低下させたが、バランスの取れたデータはこの効果を緩和した。
少数の設定では、FMは限定的な一般化を示し、線形プローブが最も安定した結果を得た。
CNNは低リソースのシナリオに引き続き依存するが、FMはデータが十分であればパラメータ効率の良い手法の恩恵を受ける。
関連論文リスト
- PathBench: A comprehensive comparison benchmark for pathology foundation models towards precision oncology [33.51485504161335]
病理基盤モデル(PFM)の最初の包括的なベンチマークであるPathBenchを紹介する。
我々のフレームワークは大規模データを組み込んで,PFMの客観的比較を可能にする。
当院では10病院で8,549人の患者から15,888件のWSIを収集し,64件以上の診断・予後調査を行った。
論文 参考訳(メタデータ) (2025-05-26T16:42:22Z) - Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
がん予後は、患者の予後と生存率を予測する重要なタスクである。
これまでの研究では、臨床ノート、医療画像、ゲノムデータなどの多様なデータモダリティを統合し、補完的な情報を活用している。
既存のアプローチには2つの大きな制限がある。まず、各病院の患者記録など、各種のトレーニングに新しく到着したデータを組み込むことに苦慮する。
第二に、ほとんどのマルチモーダル統合手法は単純化された結合やタスク固有のパイプラインに依存しており、モダリティ間の複雑な相互依存を捉えることができない。
論文 参考訳(メタデータ) (2025-01-30T06:49:57Z) - How Deep is your Guess? A Fresh Perspective on Deep Learning for Medical Time-Series Imputation [6.547981908229007]
アーキテクチャとフレームワークのバイアスがモデルのパフォーマンスにどのように影響するかを示します。
実験では、プリプロセッシングと実装の選択に基づいて、最大20%の性能変化を示す。
我々は,現在の深層計算法と医療要件の相違点を同定する。
論文 参考訳(メタデータ) (2024-07-11T12:33:28Z) - Comparison of fine-tuning strategies for transfer learning in medical image classification [2.271776292902496]
先進的な事前訓練モデルが利用可能であるにもかかわらず、医用画像への直接の応用は、医学データ特有の特徴のため、しばしば不足する。
本研究は,医療画像領域の領域にまたがる事前学習モデルに適用した各種微調整法の性能に関する総合的な分析を行う。
論文 参考訳(メタデータ) (2024-06-14T14:00:02Z) - Rethinking model prototyping through the MedMNIST+ dataset collection [0.11999555634662634]
この作業では、MedMNIST+データセットコレクションの包括的なベンチマークを導入する。
我々は、一般的なCNN(Convolutional Neural Networks)とViT(Vision Transformer)アーキテクチャを、異なる医療データセットにわたって再評価する。
この結果から,計算効率のよいトレーニングスキームと最新の基礎モデルが,エンドツーエンドのトレーニングに有効な代替手段を提供する可能性が示唆された。
論文 参考訳(メタデータ) (2024-04-24T10:19:25Z) - DrFuse: Learning Disentangled Representation for Clinical Multi-Modal
Fusion with Missing Modality and Modal Inconsistency [18.291267748113142]
そこで本研究では,DrFuseを効果的に多モード核融合を実現するために提案する。
モダリティに共通する特徴と各モダリティに特有の特徴を分離することで、モダリティの欠如に対処する。
実世界の大規模データセットMIMIC-IVとMIMIC-CXRを用いて提案手法を検証する。
論文 参考訳(メタデータ) (2024-03-10T12:41:34Z) - Multi-task fusion for improving mammography screening data
classification [3.7683182861690843]
まず、個別のタスク固有のモデルのセットをトレーニングするパイプラインアプローチを提案する。
次に、標準モデルの集合戦略とは対照的に、その融合について検討する。
我々の融合アプローチは、標準モデルのアンサンブルに比べてAUCのスコアを最大0.04向上させる。
論文 参考訳(メタデータ) (2021-12-01T13:56:27Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
本研究では,疫病データから動的コンパートメンタルモデルの時間変化パラメータを学習するための一般的な手法を提案する。
我々はイタリアとフランスの疫病の進化を予報する。
論文 参考訳(メタデータ) (2020-10-28T10:58:59Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。