Automating Traffic Monitoring with SHM Sensor Networks via Vision-Supervised Deep Learning
- URL: http://arxiv.org/abs/2506.19023v1
- Date: Mon, 23 Jun 2025 18:27:14 GMT
- Title: Automating Traffic Monitoring with SHM Sensor Networks via Vision-Supervised Deep Learning
- Authors: Hanshuo Wu, Xudong Jian, Christos Lataniotis, Cyprien Hoelzl, Eleni Chatzi, Yves Reuland,
- Abstract summary: Bridges, as critical components of civil infrastructure, are increasingly affected by deterioration.<n>Recent advances in deep learning have enabled progress toward continuous, automated monitoring.<n>We propose a fully automated deep-learning pipeline for continuous traffic monitoring using structural health monitoring (SHM) sensor networks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bridges, as critical components of civil infrastructure, are increasingly affected by deterioration, making reliable traffic monitoring essential for assessing their remaining service life. Among operational loads, traffic load plays a pivotal role, and recent advances in deep learning - particularly in computer vision (CV) - have enabled progress toward continuous, automated monitoring. However, CV-based approaches suffer from limitations, including privacy concerns and sensitivity to lighting conditions, while traditional non-vision-based methods often lack flexibility in deployment and validation. To bridge this gap, we propose a fully automated deep-learning pipeline for continuous traffic monitoring using structural health monitoring (SHM) sensor networks. Our approach integrates CV-assisted high-resolution dataset generation with supervised training and inference, leveraging graph neural networks (GNNs) to capture the spatial structure and interdependence of sensor data. By transferring knowledge from CV outputs to SHM sensors, the proposed framework enables sensor networks to achieve comparable accuracy of vision-based systems, with minimal human intervention. Applied to accelerometer and strain gauge data in a real-world case study, the model achieves state-of-the-art performance, with classification accuracies of 99% for light vehicles and 94% for heavy vehicles.
Related papers
- Visual Dominance and Emerging Multimodal Approaches in Distracted Driving Detection: A Review of Machine Learning Techniques [3.378738346115004]
Distracted driving continues to be a significant cause of road traffic injuries and fatalities worldwide.<n>Recent developments in machine learning (ML) and deep learning (DL) have primarily focused on visual data to detect distraction.<n>This systematic review assesses 74 studies that utilize ML/DL techniques for distracted driving detection across visual, sensor-based, multimodal, and emerging modalities.
arXiv Detail & Related papers (2025-05-04T02:51:00Z) - Floating Car Observers in Intelligent Transportation Systems: Detection Modeling and Temporal Insights [1.7205106391379021]
Floating Car Observers (FCOs) extend traditional Floating Car Data (FCD) by integrating onboard sensors to detect and localize other traffic participants.<n>We explore various modeling approaches for FCO detections within microscopic traffic simulations to evaluate their potential for Intelligent Transportation System (ITS) applications.
arXiv Detail & Related papers (2025-04-29T19:38:13Z) - ON-Traffic: An Operator Learning Framework for Online Traffic Flow Estimation and Uncertainty Quantification from Lagrangian Sensors [0.0]
This work introduces ON-Traffic, a novel deep operator and receding horizon learning-based framework tailored for online estimation of traffic state.<n>Our framework is evaluated in both numerical and simulation datasets, showcasing its ability to handle irregular, sparse input data, adapt to time-shifted, and provide well-calibrated uncertainty estimates.<n>The results demonstrate that the model captures complex traffic scenarios, including shockwaves and congestion propagation, while maintaining robustness to noise and sensor dropout.
arXiv Detail & Related papers (2025-03-18T09:13:24Z) - NetFlowGen: Leveraging Generative Pre-training for Network Traffic Dynamics [72.95483148058378]
We propose to pre-train a general-purpose machine learning model to capture traffic dynamics with only traffic data from NetFlow records.<n>We address challenges such as unifying network feature representations, learning from large unlabeled traffic data volume, and testing on real downstream tasks in DDoS attack detection.
arXiv Detail & Related papers (2024-12-30T00:47:49Z) - Training a Distributed Acoustic Sensing Traffic Monitoring Network With Video Inputs [0.0]
We present a novel concept that integrates DAS data with co-located visual information.<n>Our model achieves a performance exceeding 94% for detection and classification, and about 1.2% false alarm rate.
arXiv Detail & Related papers (2024-12-17T10:06:42Z) - OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
Trajectory prediction is fundamental in computer vision and autonomous driving.
Existing approaches in this field often assume precise and complete observational data.
We present a novel method for out-of-sight trajectory prediction that leverages a vision-positioning technique.
arXiv Detail & Related papers (2024-04-02T18:30:29Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Anomaly Detection in Automatic Generation Control Systems Based on
Traffic Pattern Analysis and Deep Transfer Learning [0.38073142980733]
In modern highly interconnected power grids, automatic generation control (AGC) is crucial in maintaining the stability of the power grid.
The dependence of the AGC system on the information and communications technology (ICT) system makes it vulnerable to various types of cyber-attacks.
Information flow (IF) analysis and anomaly detection became paramount for preventing cyber attackers from driving the cyber-physical power system to instability.
arXiv Detail & Related papers (2022-09-16T17:52:42Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
We present an efficient and robust LiDAR-based end-to-end navigation framework.
We propose Fast-LiDARNet that is based on sparse convolution kernel optimization and hardware-aware model design.
We then propose Hybrid Evidential Fusion that directly estimates the uncertainty of the prediction from only a single forward pass.
arXiv Detail & Related papers (2021-05-20T17:52:37Z) - Prediction of Traffic Flow via Connected Vehicles [77.11902188162458]
We propose a Short-term Traffic flow Prediction framework so that transportation authorities take early actions to control flow and prevent congestion.
We anticipate flow at future time frames on a target road segment based on historical flow data and innovative features such as real time feeds and trajectory data provided by Connected Vehicles (CV) technology.
We show how this novel approach allows advanced modelling by integrating into the forecasting of flow, the impact of various events that CV realistically encountered on segments along their trajectory.
arXiv Detail & Related papers (2020-07-10T16:00:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.