論文の概要: Convolution-weighting method for the physics-informed neural network: A Primal-Dual Optimization Perspective
- arxiv url: http://arxiv.org/abs/2506.19805v1
- Date: Tue, 24 Jun 2025 17:13:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-25 19:48:23.741507
- Title: Convolution-weighting method for the physics-informed neural network: A Primal-Dual Optimization Perspective
- Title(参考訳): 物理インフォームドニューラルネットワークの畳み込み重み付け法:主双対最適化の視点から
- Authors: Chenhao Si, Ming Yan,
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法として広く用いられている
PINNは一般に有限個の点を用いて最適化され、収束と精度を保証する上で大きな課題となる。
そこで本稿では, 減量関数に対する重み付けを, 孤立点から連続近傍領域への適応的に変更する手法を提案する。
- 参考スコア(独自算出の注目度): 14.65008276932511
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-informed neural networks (PINNs) are extensively employed to solve partial differential equations (PDEs) by ensuring that the outputs and gradients of deep learning models adhere to the governing equations. However, constrained by computational limitations, PINNs are typically optimized using a finite set of points, which poses significant challenges in guaranteeing their convergence and accuracy. In this study, we proposed a new weighting scheme that will adaptively change the weights to the loss functions from isolated points to their continuous neighborhood regions. The empirical results show that our weighting scheme can reduce the relative $L^2$ errors to a lower value.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングモデルの出力と勾配が支配方程式に一致することを保証することで偏微分方程式(PDE)を解くために広く利用されている。
しかし、計算の制限により、PINNは一般に有限個の点を用いて最適化され、収束と精度を保証する上で大きな課題が生じる。
本研究では, 減量関数に対する重み付けを, 孤立点から連続近傍領域への適応的に変更する新しい重み付け手法を提案する。
実験結果から,我々の重み付け方式は相対的な$L^2$誤差を低い値に低減できることが示された。
関連論文リスト
- SetPINNs: Set-based Physics-informed Neural Networks [31.193471532024407]
ローカル依存関係を効果的にキャプチャするフレームワークであるSetPINNを紹介する。
ドメインを集合に分割して、物理法則を同時に適用しながら、局所的な依存関係をモデル化します。
合成および実世界のタスクの実験では、精度、効率、堅牢性が改善された。
論文 参考訳(メタデータ) (2024-09-30T11:41:58Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法として広く応用されている。
本稿では,地域最適化としての新たな訓練パラダイムを提案し,理論的に検討する。
実践的なトレーニングアルゴリズムであるRerea Optimized PINN(RoPINN)は、この新しいパラダイムからシームレスに派生している。
論文 参考訳(メタデータ) (2024-05-23T09:45:57Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Adaptive Self-supervision Algorithms for Physics-informed Neural
Networks [59.822151945132525]
物理情報ニューラルネットワーク(PINN)は、損失関数のソフト制約として問題領域からの物理的知識を取り入れている。
これらのモデルの訓練性に及ぼす座標点の位置の影響について検討した。
モデルがより高い誤りを犯している領域に対して、より多くのコロケーションポイントを段階的に割り当てる適応的コロケーション方式を提案する。
論文 参考訳(メタデータ) (2022-07-08T18:17:06Z) - Enhanced Physics-Informed Neural Networks with Augmented Lagrangian
Relaxation Method (AL-PINNs) [1.7403133838762446]
物理インフォームドニューラルネットワーク(PINN)は非線形偏微分方程式(PDE)の解の強力な近似器である
PINN(AL-PINN)のための拡張ラグランジアン緩和法を提案する。
AL-PINNは、最先端の適応的損失分散アルゴリズムと比較して、相対誤差がはるかに小さいことを様々な数値実験で示している。
論文 参考訳(メタデータ) (2022-04-29T08:33:11Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism [1.6114012813668932]
非線形偏微分方程式(PDE)の数値解に対するディープニューラルネットワークの有望な応用として、物理情報ニューラルネットワーク(PINN)が登場した。
そこで本研究では,PINNを適応的にトレーニングする方法として,適応重みを完全にトレーニング可能とし,各トレーニングポイントに個別に適用する手法を提案する。
線形および非線形のベンチマーク問題による数値実験では、SA-PINNはL2エラーにおいて他の最先端のPINNアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-09-07T04:07:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。