論文の概要: Enhanced Physics-Informed Neural Networks with Augmented Lagrangian
Relaxation Method (AL-PINNs)
- arxiv url: http://arxiv.org/abs/2205.01059v2
- Date: Wed, 31 May 2023 02:39:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 04:39:24.548161
- Title: Enhanced Physics-Informed Neural Networks with Augmented Lagrangian
Relaxation Method (AL-PINNs)
- Title(参考訳): ラグランジアン緩和法(AL-PINN)による物理インフォームニューラルネットワークの強化
- Authors: Hwijae Son, Sung Woong Cho, Hyung Ju Hwang
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は非線形偏微分方程式(PDE)の解の強力な近似器である
PINN(AL-PINN)のための拡張ラグランジアン緩和法を提案する。
AL-PINNは、最先端の適応的損失分散アルゴリズムと比較して、相対誤差がはるかに小さいことを様々な数値実験で示している。
- 参考スコア(独自算出の注目度): 1.7403133838762446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-Informed Neural Networks (PINNs) have become a prominent application
of deep learning in scientific computation, as they are powerful approximators
of solutions to nonlinear partial differential equations (PDEs). There have
been numerous attempts to facilitate the training process of PINNs by adjusting
the weight of each component of the loss function, called adaptive
loss-balancing algorithms. In this paper, we propose an Augmented Lagrangian
relaxation method for PINNs (AL-PINNs). We treat the initial and boundary
conditions as constraints for the optimization problem of the PDE residual. By
employing Augmented Lagrangian relaxation, the constrained optimization problem
becomes a sequential max-min problem so that the learnable parameters $\lambda$
adaptively balance each loss component. Our theoretical analysis reveals that
the sequence of minimizers of the proposed loss functions converges to an
actual solution for the Helmholtz, viscous Burgers, and Klein--Gordon
equations. We demonstrate through various numerical experiments that AL-PINNs
yield a much smaller relative error compared with that of state-of-the-art
adaptive loss-balancing algorithms.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、非線形偏微分方程式(PDE)の解の強力な近似器であるため、科学計算におけるディープラーニングの顕著な応用となっている。
適応的損失分散アルゴリズム(Adaptive loss-balancing algorithm)と呼ばれる,損失関数の各成分の重みを調整することで,PINNのトレーニングプロセスを促進する試みが数多く行われている。
本稿では,PNN(AL-PINN)のための拡張ラグランジアン緩和法を提案する。
PDE残差の最適化問題に対する制約として,初期条件と境界条件を扱う。
拡張ラグランジュ緩和を用いることで、制約付き最適化問題は逐次最大化問題となり、学習可能なパラメータ$\lambda$は各損失成分を適応的にバランスする。
我々の理論的解析は、提案された損失関数の最小化の列がヘルムホルツ、粘性バーガーズ、クライン=ゴードン方程式の実際の解に収束することを明らかにする。
数値実験により,alピンは最先端の適応的損失分散アルゴリズムに比べ,相対誤差がはるかに小さいことを実証した。
関連論文リスト
- RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法として広く応用されている。
本稿では,地域最適化としての新たな訓練パラダイムを提案し,理論的に検討する。
実践的なトレーニングアルゴリズムであるRerea Optimized PINN(RoPINN)は、この新しいパラダイムからシームレスに派生している。
論文 参考訳(メタデータ) (2024-05-23T09:45:57Z) - Solving Forward and Inverse Problems of Contact Mechanics using
Physics-Informed Neural Networks [0.0]
出力変換によって強化された混合変数定式化でPINNをデプロイし、ハード制約とソフト制約を強制する。
PINNは純粋部分方程式(PDE)の解法として、データ強化フォワードモデルとして、そして高速に評価可能なサロゲートモデルとして機能することを示す。
論文 参考訳(メタデータ) (2023-08-24T11:31:24Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Replacing Automatic Differentiation by Sobolev Cubatures fastens Physics
Informed Neural Nets and strengthens their Approximation Power [0.6091702876917279]
本稿では,物理インフォームド・ニューラルネット(PINN)のトレーニングに適用可能な,変分損失の新たな近似クラスを提案する。
損失計算は、自動微分(A.D.)を置き換えるソボレフキュウチャー(Sobolev cubatures)と呼ばれるガウス=ルジャンドルキュウチャーの拡張に依存する。
論文 参考訳(メタデータ) (2022-11-23T11:23:08Z) - Reduced-PINN: An Integration-Based Physics-Informed Neural Networks for
Stiff ODEs [0.0]
物理インフォームドニューラルネットワーク(PINN)は、最近、前方および逆問題の両方を解決する能力により、多くの注目を集めている。
そこで我々は, PINN の高次積分法を用いて, 硬質化学動力学を解ける新しい PINN アーキテクチャ, Reduced-PINN を提案する。
論文 参考訳(メタデータ) (2022-08-23T09:20:42Z) - Physics-Informed Neural Network Method for Parabolic Differential
Equations with Sharply Perturbed Initial Conditions [68.8204255655161]
急激な摂動初期条件を持つパラボラ問題に対する物理インフォームドニューラルネットワーク(PINN)モデルを開発した。
ADE解の局所的な大きな勾配は(PINNでよく見られる)ラテンハイパーキューブで方程式の残余の高効率なサンプリングを行う。
本稿では,他の方法により選択した量よりも精度の高いPINNソリューションを生成する損失関数における重みの基準を提案する。
論文 参考訳(メタデータ) (2022-08-18T05:00:24Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Multi-Objective Loss Balancing for Physics-Informed Deep Learning [0.0]
PINNを効果的に訓練するために、複数の競合損失関数の組み合わせを正しく重み付けする役割を観察する。
本稿では,ReLoBRaLoと呼ばれるPINNの自己適応的損失分散を提案する。
シミュレーションにより、ReLoBRaLoトレーニングは、他のバランシング手法によるPINNのトレーニングよりもはるかに高速で精度の高いことが示されている。
論文 参考訳(メタデータ) (2021-10-19T09:00:12Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
本稿では,この目的関数の定式化方法が,PINNアプローチにおける厳密な制約の源であることを示す。
本稿では,逆問題と前方問題の両方に対処可能な多目的フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-30T05:55:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。