論文の概要: Robust Learning of Physics Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2110.13330v1
- Date: Tue, 26 Oct 2021 00:10:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-28 06:59:38.022553
- Title: Robust Learning of Physics Informed Neural Networks
- Title(参考訳): 物理学情報付きニューラルネットワークのロバスト学習
- Authors: Chandrajit Bajaj, Luke McLennan, Timothy Andeen, Avik Roy
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は偏微分方程式の解法に有効であることが示されている。
本稿では、PINNがトレーニングデータのエラーに敏感であり、これらのエラーをPDEの解領域上で動的に伝播させるのに過度に適合していることを示す。
- 参考スコア(独自算出の注目度): 2.86989372262348
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-informed Neural Networks (PINNs) have been shown to be effective in
solving partial differential equations by capturing the physics induced
constraints as a part of the training loss function. This paper shows that a
PINN can be sensitive to errors in training data and overfit itself in
dynamically propagating these errors over the domain of the solution of the
PDE. It also shows how physical regularizations based on continuity criteria
and conservation laws fail to address this issue and rather introduce problems
of their own causing the deep network to converge to a physics-obeying local
minimum instead of the global minimum. We introduce Gaussian Process (GP) based
smoothing that recovers the performance of a PINN and promises a robust
architecture against noise/errors in measurements. Additionally, we illustrate
an inexpensive method of quantifying the evolution of uncertainty based on the
variance estimation of GPs on boundary data. Robust PINN performance is also
shown to be achievable by choice of sparse sets of inducing points based on
sparsely induced GPs. We demonstrate the performance of our proposed methods
and compare the results from existing benchmark models in literature for
time-dependent Schr\"odinger and Burgers' equations.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、トレーニング損失関数の一部として物理誘起制約を捕捉することにより偏微分方程式の解法に有効であることが示されている。
本稿では、PINNがトレーニングデータのエラーに敏感であり、これらのエラーをPDEの解領域上で動的に伝播させるのに過度に適合していることを示す。
また、連続性基準と保存則に基づく物理正規化がこの問題にどのように対処できず、むしろ深層ネットワークが大域的最小値ではなく物理学的に観測される局所的最小値に収束する独自の問題を導入するかを示す。
本稿では、PINNの性能を回復し、計測におけるノイズ/エラーに対する堅牢なアーキテクチャを約束するガウスプロセス(GP)に基づくスムース化を提案する。
さらに,境界データに対するgpsの分散推定に基づいて不確実性の進化を定量化する安価な手法を提案する。
ロバストなPINN性能は、スパース的に誘導されるGPに基づく誘導点のスパースセットの選択によっても達成可能である。
提案手法の性能を実演し、時間依存型シュリンガー方程式とバーガース方程式の文献における既存のベンチマークモデルの結果を比較する。
関連論文リスト
- Improving PINNs By Algebraic Inclusion of Boundary and Initial Conditions [0.1874930567916036]
AI for Science」は、AI技術を用いた基本的な科学的問題を解決することを目的としている。
本研究では、トレーニング対象のモデルを単にニューラルネットワークから非線形変換に変更する可能性について検討する。
これにより、損失関数の項数は標準のPINN損失よりも減少する。
論文 参考訳(メタデータ) (2024-07-30T11:19:48Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
グラフニューラルネットワークは、様々なアプリケーションにまたがる強力なパフォーマンスで認識されている。
BPには、その生物学的妥当性に挑戦する制限があり、グラフベースのタスクのためのトレーニングニューラルネットワークの効率、スケーラビリティ、並列性に影響を与える。
半教師付き学習のケーススタディを用いて,GNNに適した新しい前方学習フレームワークであるDFA-GNNを提案する。
論文 参考訳(メタデータ) (2024-06-04T07:24:51Z) - Physics-Informed Deep Learning of Rate-and-State Fault Friction [0.0]
我々は, 前方問題と非線形欠陥摩擦パラメータの直接逆変換のためのマルチネットワークPINNを開発した。
本稿では1次元および2次元のストライク・スリップ断層に対する速度・状態摩擦を考慮した計算PINNフレームワークを提案する。
その結果, 断層におけるパラメータ逆転のネットワークは, 結合した物質変位のネットワークよりもはるかに優れていることがわかった。
論文 参考訳(メタデータ) (2023-12-14T23:53:25Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Enhanced Physics-Informed Neural Networks with Augmented Lagrangian
Relaxation Method (AL-PINNs) [1.7403133838762446]
物理インフォームドニューラルネットワーク(PINN)は非線形偏微分方程式(PDE)の解の強力な近似器である
PINN(AL-PINN)のための拡張ラグランジアン緩和法を提案する。
AL-PINNは、最先端の適応的損失分散アルゴリズムと比較して、相対誤差がはるかに小さいことを様々な数値実験で示している。
論文 参考訳(メタデータ) (2022-04-29T08:33:11Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - How to Avoid Trivial Solutions in Physics-Informed Neural Networks [0.0]
本研究では,物理に基づくペナルティ項の強制に使用されるコロケーション点数に関して,PINNの予測性能について検討する。
PINNは、定義によって物理由来のペナルティ項を満たす自明な解を学習し、失敗する可能性があることを示す。
我々は,データスカース設定におけるPINNの根本的問題と競合する結果に対処するための代替的なサンプリング手法と新たなペナルティ項を開発した。
論文 参考訳(メタデータ) (2021-12-10T15:54:54Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Stochastic Graph Neural Networks [123.39024384275054]
グラフニューラルネットワーク(GNN)は、分散エージェント調整、制御、計画に応用したグラフデータの非線形表現をモデル化する。
現在のGNNアーキテクチャは理想的なシナリオを前提として,環境やヒューマンファクタ,あるいは外部攻撃によるリンク変動を無視している。
これらの状況において、GNNは、トポロジカルなランダム性を考慮していない場合、その分散タスクに対処することができない。
論文 参考訳(メタデータ) (2020-06-04T08:00:00Z) - A nonlocal physics-informed deep learning framework using the
peridynamic differential operator [0.0]
本研究では,長距離相互作用を組み込んだ数値計算法であるPeridynamic Differential Operator (PDDO) を用いた非局所PINN手法を開発した。
PDDO関数はニューラルネットワークアーキテクチャに容易に組み込むことができるため、非局所性は現代のディープラーニングアルゴリズムの性能を低下させることはない。
本稿では,非局所PINNの解法精度とパラメータ推定の両方において,局所PINNに対して優れた振る舞いを示す。
論文 参考訳(メタデータ) (2020-05-31T06:26:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。