Argumentative Ensembling for Robust Recourse under Model Multiplicity
- URL: http://arxiv.org/abs/2506.20260v1
- Date: Wed, 25 Jun 2025 09:07:00 GMT
- Title: Argumentative Ensembling for Robust Recourse under Model Multiplicity
- Authors: Junqi Jiang, Antonio Rago, Francesco Leofante, Francesca Toni,
- Abstract summary: In machine learning, it is common to obtain multiple equally performing models for the same prediction task.<n>Model multiplicity (MM) arises when competing models differ in their predictions for the same input.<n>We formalise the problem of providing recourse under MM, which we name recourse-aware ensembling (RAE)
- Score: 15.954944873701503
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In machine learning, it is common to obtain multiple equally performing models for the same prediction task, e.g., when training neural networks with different random seeds. Model multiplicity (MM) is the situation which arises when these competing models differ in their predictions for the same input, for which ensembling is often employed to determine an aggregation of the outputs. Providing recourse recommendations via counterfactual explanations (CEs) under MM thus becomes complex, since the CE may not be valid across all models, i.e., the CEs are not robust under MM. In this work, we formalise the problem of providing recourse under MM, which we name recourse-aware ensembling (RAE). We propose the idea that under MM, CEs for each individual model should be considered alongside their predictions so that the aggregated prediction and recourse are decided in tandem. Centred around this intuition, we introduce six desirable properties for solutions to this problem. For solving RAE, we propose a novel argumentative ensembling method which guarantees the robustness of CEs under MM. Specifically, our method leverages computational argumentation to explicitly represent the conflicts between models and counterfactuals regarding prediction results and CE validity. It then uses argumentation semantics to resolve the conflicts and obtain the final solution, in a manner which is parametric to the chosen semantics. Our method also allows for the specification of preferences over the models under MM, allowing further customisation of the ensemble. In a comprehensive theoretical analysis, we characterise the behaviour of argumentative ensembling with four different argumentation semantics. We then empirically demonstrate the effectiveness of our approach in satisfying desirable properties with eight instantiations of our method. (Abstract is shortened for arXiv.)
Related papers
- Mallows-type model averaging: Non-asymptotic analysis and all-subset combination [0.0]
We show that there exists a fundamental limit to achieving the optimal all-subset MA risk.<n>We propose a novel Mallows-type MA procedure based on a dimension-adaptive $C_p$ criterion.
arXiv Detail & Related papers (2025-05-05T13:30:17Z) - Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.<n>The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.<n>The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - Reconciling Predictive Multiplicity in Practice [43.74883617124773]
Reconcile is a reconciliation procedure to address the model multiplicity (MM) phenomenon.<n>In this paper, we empirically analyze the Reconcile algorithm using five widely-used fairness datasets.<n>We extend the Reconcile algorithm to the setting of causal inference, given that different competing estimators can again disagree on specific causal average treatment effect (CATE) values.
arXiv Detail & Related papers (2025-01-27T22:48:20Z) - Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
Sparse Mixture of Expert (SMoE) models have emerged as a scalable alternative to dense models in language modeling.
Our research explores task-specific model pruning to inform decisions about designing SMoE architectures.
We introduce an adaptive task-aware pruning technique UNCURL to reduce the number of experts per MoE layer in an offline manner post-training.
arXiv Detail & Related papers (2024-09-02T22:35:03Z) - MAP: Low-compute Model Merging with Amortized Pareto Fronts via Quadratic Approximation [80.47072100963017]
We introduce a novel and low-compute algorithm, Model Merging with Amortized Pareto Front (MAP)<n>MAP efficiently identifies a set of scaling coefficients for merging multiple models, reflecting the trade-offs involved.<n>We also introduce Bayesian MAP for scenarios with a relatively low number of tasks and Nested MAP for situations with a high number of tasks, further reducing the computational cost of evaluation.
arXiv Detail & Related papers (2024-06-11T17:55:25Z) - Variational Inference of Parameters in Opinion Dynamics Models [9.51311391391997]
This work uses variational inference to estimate the parameters of an opinion dynamics ABM.
We transform the inference process into an optimization problem suitable for automatic differentiation.
Our approach estimates both macroscopic (bounded confidence intervals and backfire thresholds) and microscopic ($200$ categorical, agent-level roles) more accurately than simulation-based and MCMC methods.
arXiv Detail & Related papers (2024-03-08T14:45:18Z) - Source-Free Unsupervised Domain Adaptation with Hypothesis Consolidation
of Prediction Rationale [53.152460508207184]
Source-Free Unsupervised Domain Adaptation (SFUDA) is a challenging task where a model needs to be adapted to a new domain without access to target domain labels or source domain data.
This paper proposes a novel approach that considers multiple prediction hypotheses for each sample and investigates the rationale behind each hypothesis.
To achieve the optimal performance, we propose a three-step adaptation process: model pre-adaptation, hypothesis consolidation, and semi-supervised learning.
arXiv Detail & Related papers (2024-02-02T05:53:22Z) - Recourse under Model Multiplicity via Argumentative Ensembling
(Technical Report) [17.429631079094186]
We name recourse-aware ensembling, and identify several desirable properties which methods for solving it should satisfy.
We show theoretically and experimentally that argumentative ensembling satisfies properties which the existing methods lack, and that the trade-offs are minimal wrt accuracy.
arXiv Detail & Related papers (2023-12-22T22:33:39Z) - Evaluating Sensitivity to the Stick-Breaking Prior in Bayesian
Nonparametrics [85.31247588089686]
We show that variational Bayesian methods can yield sensitivities with respect to parametric and nonparametric aspects of Bayesian models.
We provide both theoretical and empirical support for our variational approach to Bayesian sensitivity analysis.
arXiv Detail & Related papers (2021-07-08T03:40:18Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - Network Estimation by Mixing: Adaptivity and More [2.3478438171452014]
We propose a mixing strategy that leverages available arbitrary models to improve their individual performances.
The proposed method is computationally efficient and almost tuning-free.
We show that the proposed method performs equally well as the oracle estimate when the true model is included as individual candidates.
arXiv Detail & Related papers (2021-06-05T05:17:04Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
We show that a posterior approximation distinct from the variational distribution should be used for making decisions.
Motivated by these theoretical results, we propose learning several approximate proposals for the best model.
In addition to toy examples, we present a full-fledged case study of single-cell RNA sequencing.
arXiv Detail & Related papers (2020-02-17T19:23:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.