論文の概要: Active Inference AI Systems for Scientific Discovery
- arxiv url: http://arxiv.org/abs/2506.21329v1
- Date: Thu, 26 Jun 2025 14:43:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-27 19:53:10.137458
- Title: Active Inference AI Systems for Scientific Discovery
- Title(参考訳): 科学的発見のためのアクティブ推論AIシステム
- Authors: Karthik Duraisamy,
- Abstract要約: AI駆動科学の進歩は、現在、抽象的ギャップ、推論的ギャップ、現実的ギャップという3つの基本的なギャップを閉じることに依存している、と私たちは主張する。
我々は、科学的発見のための能動的推論AIシステムを、因果自己管理基礎モデルに基づく長期研究記憶を維持するものとして定義する。
また、シミュレーションや実験からのフィードバックの本来の曖昧さや、根底にある不確実性が人間の判断を不可欠にしているとも主張されている。
- 参考スコア(独自算出の注目度): 1.450405446885067
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid evolution of artificial intelligence has led to expectations of transformative scientific discovery, yet current systems remain fundamentally limited by their operational architectures, brittle reasoning mechanisms, and their separation from experimental reality. Building on earlier work, we contend that progress in AI-driven science now depends on closing three fundamental gaps -- the abstraction gap, the reasoning gap, and the reality gap -- rather than on model size/data/test time compute. Scientific reasoning demands internal representations that support simulation of actions and response, causal structures that distinguish correlation from mechanism, and continuous calibration. We define active inference AI systems for scientific discovery as those that (i) maintain long-lived research memories grounded in causal self-supervised foundation models, (ii) symbolic or neuro-symbolic planners equipped with Bayesian guardrails, (iii) grow persistent knowledge graphs where thinking generates novel conceptual nodes, reasoning establishes causal edges, and real-world interaction prunes false connections while strengthening verified pathways, and (iv) refine their internal representations through closed-loop interaction with both high-fidelity simulators and automated laboratories - an operational loop where mental simulation guides action and empirical surprise reshapes understanding. In essence, we outline an architecture where discovery arises from the interplay between internal models that enable counterfactual reasoning and external validation that grounds hypotheses in reality. It is also argued that the inherent ambiguity in feedback from simulations and experiments, and underlying uncertainties makes human judgment indispensable, not as a temporary scaffold but as a permanent architectural component.
- Abstract(参考訳): 人工知能の急速な進化は、変革的な科学的発見の期待につながったが、現在のシステムは、運用アーキテクチャ、不安定な推論機構、実験的な現実からの分離によって、基本的に制限されている。
AI駆動科学の進歩は、モデルのサイズ/データ/テスト時間計算ではなく、抽象化ギャップ、推論ギャップ、現実ギャップという3つの基本的なギャップを閉じることに依存している、と私たちは主張する。
科学的推論は、行動と反応のシミュレーションをサポートする内部表現、メカニズムと相関を区別する因果構造、継続的な校正を必要とする。
我々は科学的発見のためのアクティブ推論AIシステムをそれと定義する
一 因果自己監督基礎モデルに基づく長期研究記憶を維持すること。
二 ベイズ式ガードレールを備えた象徴的又は神経象徴的プランナー
三 思考が新しい概念ノードを発生し、推論が因果関係を確立し、実世界の相互作用が証明された経路を強化しながら偽のつながりを産み出す、永続的な知識グラフを成長させ、
四 高忠実度シミュレーターと自動実験室の両方とのクローズドループ相互作用により、内部表現を洗練させる。
本質的には、事実の仮説を根拠として、反実的推論と外部検証を可能にする内部モデル間の相互作用から発見が生じるアーキテクチャを概説する。
また、シミュレーションや実験からのフィードバックの本来の曖昧さや根底にある不確実性は、人間の判断を一時的な足場としてではなく、恒久的な建築要素として欠かせないものにしているとも主張されている。
関連論文リスト
- Position: Intelligent Science Laboratory Requires the Integration of Cognitive and Embodied AI [98.19195693735487]
知的科学研究所(ISL)のパラダイムを提案する。
ISLは、認知と具体的知性を深く統合した多層クローズドループフレームワークである。
このようなシステムは、現在の科学的発見の限界を克服するために不可欠である、と我々は主張する。
論文 参考訳(メタデータ) (2025-06-24T13:31:44Z) - Bayesian Epistemology with Weighted Authority: A Formal Architecture for Truth-Promoting Autonomous Scientific Reasoning [0.0]
本稿では,ベイジアン・エピステロジーとウェイト・オーソリティ(BEWA)を紹介する。
BEWAは、構造化された科学的主張に対する動的で確率論的に一貫性のある関数としての信念を運用している。
グラフベースのクレーム伝搬、権威的信頼性モデリング、暗号化アンカー、ゼロ知識監査検証をサポートする。
論文 参考訳(メタデータ) (2025-06-19T04:22:35Z) - Nature's Insight: A Novel Framework and Comprehensive Analysis of Agentic Reasoning Through the Lens of Neuroscience [11.174550573411008]
エージェント推論のための神経科学に着想を得た新しい枠組みを提案する。
我々は,既存のAI推論手法を体系的に分類し,分析するために,この枠組みを適用した。
本稿では,ニューラルインスパイアされた新しい推論手法を提案する。
論文 参考訳(メタデータ) (2025-05-07T14:25:46Z) - Embodied World Models Emerge from Navigational Task in Open-Ended Environments [5.785697934050656]
プロシージャ的に生成された平面迷路を解決するために,スパース報酬のみで訓練された反復エージェントが,方向,距離,障害物レイアウトなどの計量概念を自律的に内部化できるかどうかを問う。
トレーニングの後、エージェントは、下層の空間モデルにヒントを与える行動である、見えない迷路において、常に準最適経路を生成する。
論文 参考訳(メタデータ) (2025-04-15T17:35:13Z) - Continuum-Interaction-Driven Intelligence: Human-Aligned Neural Architecture via Crystallized Reasoning and Fluid Generation [1.5800607910450124]
現在のAIシステムは、幻覚、予測不能、そして人間の意思決定と不一致といった課題に直面している。
本研究では、確率的生成(LLM)とホワイトボックスの手続き的推論(チェーン・オブ・シント)を統合し、解釈可能で、継続的な学習可能で、人間に準拠したAIシステムを構築する二チャンネルインテリジェントアーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-04-12T18:15:49Z) - Learning World Models With Hierarchical Temporal Abstractions: A Probabilistic Perspective [2.61072980439312]
内部世界モデルを開発するためのフォーマリズムの開発は、人工知能と機械学習の分野における重要な研究課題である。
この論文は、状態空間モデルを内部世界モデルとして広く用いられることによるいくつかの制限を識別する。
形式主義におけるモデルの構造は、信念の伝播を用いた正確な確率的推論を促進するとともに、時間を通してのバックプロパゲーションによるエンドツーエンドの学習を促進する。
これらの形式主義は、世界の状態における不確実性の概念を統合し、現実世界の性質をエミュレートし、その予測の信頼性を定量化する能力を向上させる。
論文 参考訳(メタデータ) (2024-04-24T12:41:04Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - Active Inference in Robotics and Artificial Agents: Survey and
Challenges [51.29077770446286]
我々は、状態推定、制御、計画、学習のためのアクティブ推論の最先端理論と実装についてレビューする。
本稿では、適応性、一般化性、堅牢性の観点から、その可能性を示す関連する実験を紹介する。
論文 参考訳(メタデータ) (2021-12-03T12:10:26Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
因果誘導における現在の視覚システムの系統的評価のための抽象因果分析データセットについて紹介する。
Blicket実験における因果発見の研究の流れに触発され、独立シナリオと介入シナリオのいずれにおいても、以下の4種類の質問で視覚的推論システムに問い合わせる。
純粋なニューラルモデルは確率レベルのパフォーマンスの下で連想戦略に向かう傾向があるのに対し、ニューロシンボリックな組み合わせは後方ブロッキングの推論に苦しむ。
論文 参考訳(メタデータ) (2021-03-26T02:42:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。