Quantum Theory of Optical Spin Texture in Chiral Tellurium Lattice
- URL: http://arxiv.org/abs/2506.21610v2
- Date: Tue, 22 Jul 2025 14:23:44 GMT
- Title: Quantum Theory of Optical Spin Texture in Chiral Tellurium Lattice
- Authors: Pronoy Das, Sathwik Bharadwaj, Jungho Mun, Xueji Wang, Junsuk Rho, Zubin Jacob,
- Abstract summary: We develop a spin-resolved deep-microscopic optical bandstructure for Te analogous to its electronic counterpart.<n>At the lattice level, we reveal that the chirality of Te manifests as deep-microscopic optical spin texture within the optical wave.<n>Our framework uncovers the finite-momentum origin of optical activity and provides a microscopic basis for light-matter interactions in chiral crystalline materials.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The absence of inversion symmetry in chiral tellurium (Te) creates exotic spin textures within its electron waves. However, understanding textured optical waves within Te remains a challenge due to the semi-classical limitations of long-wavelength approximation. To unveil these textured optical waves, we develop a spin-resolved deep-microscopic optical bandstructure for Te analogous to its electronic counterpart. We demonstrate that the degeneracies in this optical bandstructure is lifted by the twisted lattice of Te, which induces optical gyrotropy. Our theory shows excellent agreement with experimental optical gyrotropy measurements. At the lattice level, we reveal that the chirality of Te manifests as deep-microscopic optical spin texture within the optical wave. Our framework uncovers the finite-momentum origin of optical activity and provides a microscopic basis for light-matter interactions in chiral crystalline materials.
Related papers
- Observation of non-Markovian Radiative Phenomena in Structured Photonic Lattices [0.0]
We study the non-Markovian radiation dynamics of an emitter coupled to two-dimensional structured reservoirs.<n>Our platform opens a path for the experimental exploration of single photon quantum optical phenomena in structured reservoirs.
arXiv Detail & Related papers (2025-01-16T03:05:41Z) - Correlated relaxation and emerging entanglement in arrays of $Λ$-type atoms [83.88591755871734]
We show that the atomic entanglement emerges in the course of relaxation and persists in the final steady state of the system.
Our findings open a new way to engineer dissipation-induced entanglement.
arXiv Detail & Related papers (2024-11-11T08:39:32Z) - Topological atom optics and beyond with knotted quantum wavefunctions [0.310688583550805]
Atom optics demonstrates optical phenomena with coherent matter waves, providing a foundational connection between light and matter.
We create knotted quantum wavefunctions in spinor Bose-Einstein condensates which display non-trivial topologies.
In this paper we demonstrate striking connections between the symmetries and underlying topologies of multicomponent atomic systems.
arXiv Detail & Related papers (2023-12-15T09:02:07Z) - Enhancing the robustness of coupling between a single emitter and a
photonic crystal waveguide [62.997667081978825]
We use this model to propose approaches to the design of a photonic crystal waveguide maximizing the Purcell enhancement at a target wavelength.
Numerical simulations indicate that the proposed structures exhibit robustness to fabrication defects introduced into photonic crystal geometry.
arXiv Detail & Related papers (2022-10-13T21:01:46Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Review on coherent quantum emitters in hexagonal boron nitride [91.3755431537592]
I discuss the state-of-the-art of defect centers in hexagonal boron nitride with a focus on optically coherent defect centers.
The spectral transition linewidth remains unusually narrow even at room temperature.
The field is put into a broad perspective with impact on quantum technology such as quantum optics, quantum photonics as well as spin optomechanics.
arXiv Detail & Related papers (2022-01-31T12:49:43Z) - Engineering entangled photons for transmission in ring-core optical
fibers [0.0]
We study the generation of entangled photons tailor-made for coupling into ring core optical fibers.
We show that the coupling of photon pairs produced by parametric down-conversion can be increased by close to a factor of three.
arXiv Detail & Related papers (2021-09-07T12:55:33Z) - Localized vibrational modes in waveguide quantum optomechanics with
spontaneously broken PT symmetry [117.44028458220427]
We study theoretically two vibrating quantum emitters trapped near a one-dimensional waveguide and interacting with propagating photons.
In the regime of strong optomechanical interaction the light-induced coupling of emitter vibrations can lead to formation of spatially localized vibration modes, exhibiting parity-time symmetry breaking.
arXiv Detail & Related papers (2021-06-29T12:45:44Z) - Quantum structured light: Non-classical spin texture of twisted
single-photon pulses [8.19841678851784]
A framework for the quantum density of spin and OAM for single-photons remains elusive.
We develop a theoretical framework and put forth the concept of quantum structured light for space-time wavepackets at the single-photon level.
Our work paves the way for quantum spin-OAM physics in twisted single photon pulses.
arXiv Detail & Related papers (2021-02-26T01:08:57Z) - Topological photon pairs in a superconducting quantum metamaterial [44.62475518267084]
We use an array of superconducting qubits to engineer a nontrivial quantum metamaterial.
By performing microwave spectroscopy of the fabricated array, we experimentally observe the spectrum of elementary excitations.
We find not only the single-photon topological states but also the bands of exotic bound photon pairs arising due to the inherent anharmonicity of qubits.
arXiv Detail & Related papers (2020-06-23T07:04:27Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Optical properties of a waveguide-mediated chain of randomly positioned
atoms [1.263953193517797]
We study the optical properties of an ensemble of two-level atoms coupled to a one-dimensional waveguide.
Results reveal that the optical transport properties of the atomic ensemble are influenced by the lattice constant and the filling factor of the lattice sites.
arXiv Detail & Related papers (2020-03-14T10:17:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.