Quantum Transition Rates in Arbitrary Physical Processes
- URL: http://arxiv.org/abs/2506.21672v1
- Date: Thu, 26 Jun 2025 18:00:11 GMT
- Title: Quantum Transition Rates in Arbitrary Physical Processes
- Authors: Adolfo del Campo, AndrĂ¡s Grabarits, Dmitrii Makarov, Seong-Ho Shinn,
- Abstract summary: We introduce a framework for computing time-dependent quantum transition rates (QTRs)<n>QTRs describe the pace of evolution of a quantum state from a given subspace to a target subspace.<n>We show how QTRs can be controlled by counterdiabatic driving.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a framework for computing time-dependent quantum transition rates (QTRs) that describe the pace of evolution of a quantum state from a given subspace to a target subspace. QTRs are expressed in terms of flux-flux correlators and are shown to obey two complementary quantum speed limits. Our framework readily accommodates the generalization of Hamiltonian dynamics to arbitrary open quantum evolution, including quantum measurements. We illustrate how QTRs can be controlled by counterdiabatic driving.
Related papers
- Topological control of quantum speed limits [55.2480439325792]
We show that even if the quantum state is completely dispersionless, QFI in this state remains momentum-resolved.<n>We find bounds on quantum speed limit which scales as $sqrt|C|$ in a (dispersionless) topological phase.
arXiv Detail & Related papers (2025-07-21T18:00:07Z) - Phase transitions, symmetries, and tunneling in Kerr parametric oscillators [37.69303106863453]
We study the onset of ground-state and excited-state quantum phase transitions in KPOs.<n>We identify the critical points associated with quantum phase transitions and analyze their influence on the energy spectrum and tunneling dynamics.<n>Our findings provide insights into the engineering of robust quantum states, quantum dynamics control, and onset of quantum phase transitions with implications for critical quantum sensing.
arXiv Detail & Related papers (2025-04-21T18:00:19Z) - Quantum highway: Observation of minimal and maximal speed limits for few and many-body states [19.181412608418608]
Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change.
We show that one can test the known quantum speed limits and that modifying a single Hamiltonian parameter allows the observation of the crossover of the different bounds on the dynamics.
arXiv Detail & Related papers (2024-08-21T18:00:07Z) - Quantum Speed Limits for Implementation of Unitary Transformations [0.0]
We provide bounds on the speed limit of quantum evolution by unitary operators in arbitrary dimensions.
We will discuss the application of these bounds in several classes of transformations that are of interest to quantum information processing.
arXiv Detail & Related papers (2024-06-06T11:17:21Z) - Quadratic growth of Out-of-time ordered correlators in quantum kicked
rotor model [0.0]
We study the dynamics of Out-of-Time-Ordered Correlators (OTOCs) in quantum resonance condition for a kicked rotor model.
We find that the OTOCs of different types increase in a quadratic function of time, breaking the freezing of quantum scrambling induced by the dynamical localization under non-resonance condition.
arXiv Detail & Related papers (2024-01-19T23:17:31Z) - Chaotic fluctuations in a universal set of transmon qubit gates [37.69303106863453]
Transmon qubits arise from the quantization of nonlinear resonators.
Fast entangling gates, operating at speeds close to the so-called quantum speed limit, contain transient regimes where the dynamics indeed becomes partially chaotic for just two transmons.
arXiv Detail & Related papers (2023-11-24T16:30:56Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Quantum Speed Limit for Change of Basis [55.500409696028626]
We extend the notion of quantum speed limits to collections of quantum states.
For two-qubit systems, we show that the fastest transformation implements two Hadamards and a swap of the qubits simultaneously.
For qutrit systems the evolution time depends on the particular type of the unbiased basis.
arXiv Detail & Related papers (2022-12-23T14:10:13Z) - Quantum speed limits on operator flows and correlation functions [0.0]
Quantum speed limits (QSLs) identify fundamental time scales of physical processes by providing lower bounds on the rate of change of a quantum state or the expectation value of an observable.
We derive two types of QSLs and assess the existence of a crossover between them, that we illustrate with a qubit and a random matrix Hamiltonian.
We further apply our results to the time evolution of autocorrelation functions, obtaining computable constraints on the linear response of quantum systems out of equilibrium and the quantum Fisher information governing the precision in quantum parameter estimation.
arXiv Detail & Related papers (2022-07-12T18:00:07Z) - Quantumness and speedup limit of a qubit under transition frequency
modulation [0.0]
We show the capability of a frequency-modulated qubit embedded in a leaky cavity to exhibit enhancement of its dynamical quantum features.
We also find an evolution speedup of the qubit through proper manipulation of the modulation parameters of the driving field.
arXiv Detail & Related papers (2022-06-14T20:20:57Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Kibble-Zurek scaling in quantum speed limits for shortcuts to
adiabaticity [0.0]
We show that the quantum speed limit for counterdiabatically driven systems undergoing quantum phase transitions fully encodes the Kibble-Zurek mechanism.
Our findings are demonstrated for three scenarios, namely the transverse field Ising, the Landau-Zener, and the Lipkin-Meshkov-Glick models.
arXiv Detail & Related papers (2020-06-08T18:00:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.