CA-Diff: Collaborative Anatomy Diffusion for Brain Tissue Segmentation
- URL: http://arxiv.org/abs/2506.22882v1
- Date: Sat, 28 Jun 2025 13:39:09 GMT
- Title: CA-Diff: Collaborative Anatomy Diffusion for Brain Tissue Segmentation
- Authors: Qilong Xing, Zikai Song, Yuteng Ye, Yuke Chen, Youjia Zhang, Na Feng, Junqing Yu, Wei Yang,
- Abstract summary: Collaborative Diffusion (CA-Diff) is a framework integrating spatial anatomical features to enhance segmentation accuracy.<n>We introduce distance field as an auxiliary anatomical condition to provide global spatial context.<n>We also introduce a consistency loss to refine relationships between the distance field and anatomical structures.
- Score: 9.51662728609265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Segmentation of brain structures from MRI is crucial for evaluating brain morphology, yet existing CNN and transformer-based methods struggle to delineate complex structures accurately. While current diffusion models have shown promise in image segmentation, they are inadequate when applied directly to brain MRI due to neglecting anatomical information. To address this, we propose Collaborative Anatomy Diffusion (CA-Diff), a framework integrating spatial anatomical features to enhance segmentation accuracy of the diffusion model. Specifically, we introduce distance field as an auxiliary anatomical condition to provide global spatial context, alongside a collaborative diffusion process to model its joint distribution with anatomical structures, enabling effective utilization of anatomical features for segmentation. Furthermore, we introduce a consistency loss to refine relationships between the distance field and anatomical structures and design a time adapted channel attention module to enhance the U-Net feature fusion procedure. Extensive experiments show that CA-Diff outperforms state-of-the-art (SOTA) methods.
Related papers
- GRASPing Anatomy to Improve Pathology Segmentation [67.98147643529309]
We introduce GRASP, a modular plug-and-play framework that enhances pathology segmentation models.<n>We evaluate GRASP on two PET/CT datasets, conduct systematic ablation studies, and investigate the framework's inner workings.
arXiv Detail & Related papers (2025-08-05T12:26:36Z) - ATM-Net: Anatomy-Aware Text-Guided Multi-Modal Fusion for Fine-Grained Lumbar Spine Segmentation [38.04249138515548]
ATM-Net is an innovative framework that employs an anatomy-aware, text-guided, multi-modal fusion mechanism for fine-grained segmentation of lumbar substructures.<n> ATM-Net achieves Dice of 79.39% and HD95 of 9.91 pixels on SPIDER, outperforming the competitive SpineParseNet by 8.31% and 4.14 pixels, respectively.
arXiv Detail & Related papers (2025-04-04T14:36:12Z) - KLDD: Kalman Filter based Linear Deformable Diffusion Model in Retinal Image Segmentation [51.03868117057726]
This paper proposes a novel Kalman filter based Linear Deformable Diffusion (KLDD) model for retinal vessel segmentation.
Our model employs a diffusion process that iteratively refines the segmentation, leveraging the flexible receptive fields of deformable convolutions.
Experiments are evaluated on retinal fundus image datasets (DRIVE, CHASE_DB1) and the 3mm and 6mm of the OCTA-500 dataset.
arXiv Detail & Related papers (2024-09-19T14:21:38Z) - Anatomy-guided Pathology Segmentation [56.883822515800205]
We develop a generalist segmentation model that combines anatomical and pathological information, aiming to enhance the segmentation accuracy of pathological features.
Our Anatomy-Pathology Exchange (APEx) training utilizes a query-based segmentation transformer which decodes a joint feature space into query-representations for human anatomy.
In doing so, we are able to report the best results across the board on FDG-PET-CT and Chest X-Ray pathology segmentation tasks with a margin of up to 3.3% as compared to strong baseline methods.
arXiv Detail & Related papers (2024-07-08T11:44:15Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Teaching AI the Anatomy Behind the Scan: Addressing Anatomical Flaws in Medical Image Segmentation with Learnable Prior [34.54360931760496]
Key anatomical features, such as the number of organs, their shapes and relative positions, are crucial for building a robust multi-organ segmentation model.
We introduce a novel architecture called the Anatomy-Informed Network (AIC-Net)
AIC-Net incorporates a learnable input termed "Anatomical Prior", which can be adapted to patient-specific anatomy.
arXiv Detail & Related papers (2024-03-27T10:46:24Z) - Brain Structure-Function Fusing Representation Learning using
Adversarial Decomposed-VAE for Analyzing MCI [17.757114703434027]
A novel brain structure-function fusing-representation learning (BSFL) model is proposed to learn fused representation from fMRI imaging.
The proposed model achieves better performance than other competitive methods in predicting and analyzing mild cognitive impairment (MCI)
The model could be a potential tool for reconstructing unified brain networks and predicting abnormal connections during the degenerative processes in MCI.
arXiv Detail & Related papers (2023-05-23T11:19:02Z) - Structure-aware registration network for liver DCE-CT images [50.28546654316009]
We propose a novel structure-aware registration method by incorporating structural information of related organs with segmentation-guided deep registration network.
Our proposed method can achieve higher registration accuracy and preserve anatomical structure more effectively than state-of-the-art methods.
arXiv Detail & Related papers (2023-03-08T14:08:56Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Statistical Shape Modeling of Biventricular Anatomy with Shared
Boundaries [16.287876512923084]
This paper presents a general and flexible data-driven approach for building statistical shape models of multi-organ anatomies with shared boundaries.
Shape changes within these shared boundaries of the heart can indicate potential pathological changes that lead to uncoordinated contraction and poor end-organ perfusion.
arXiv Detail & Related papers (2022-09-06T15:54:37Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.