論文の概要: Cybersecurity-Focused Anomaly Detection in Connected Autonomous Vehicles Using Machine Learning
- arxiv url: http://arxiv.org/abs/2506.22984v1
- Date: Sat, 28 Jun 2025 19:11:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:53.659368
- Title: Cybersecurity-Focused Anomaly Detection in Connected Autonomous Vehicles Using Machine Learning
- Title(参考訳): 機械学習を用いた連系自動運転車のサイバーセキュリティに焦点をあてた異常検出
- Authors: Prathyush Kumar Reddy Lebaku, Lu Gao, Yunpeng Zhang, Zhixia Li, Yongxin Liu, Tanvir Arafin,
- Abstract要約: 連結自動運転車(CAV)の異常検出は、安全で信頼性の高い輸送ネットワークを維持するために不可欠である。
本研究では、車両の挙動をシミュレートし、典型的および非典型的な車両間の相互作用を表すデータセットを生成する異常検出手法について検討する。
機械学習モデルを用いて、異常運転パターンを効果的に同定する。
- 参考スコア(独自算出の注目度): 4.800738030285873
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection in connected autonomous vehicles (CAVs) is crucial for maintaining safe and reliable transportation networks, as CAVs can be susceptible to sensor malfunctions, cyber-attacks, and unexpected environmental disruptions. This study explores an anomaly detection approach by simulating vehicle behavior, generating a dataset that represents typical and atypical vehicular interactions. The dataset includes time-series data of position, speed, and acceleration for multiple connected autonomous vehicles. We utilized machine learning models to effectively identify abnormal driving patterns. First, we applied a stacked Long Short-Term Memory (LSTM) model to capture temporal dependencies and sequence-based anomalies. The stacked LSTM model processed the sequential data to learn standard driving behaviors. Additionally, we deployed a Random Forest model to support anomaly detection by offering ensemble-based predictions, which enhanced model interpretability and performance. The Random Forest model achieved an R2 of 0.9830, MAE of 5.746, and a 95th percentile anomaly threshold of 14.18, while the stacked LSTM model attained an R2 of 0.9998, MAE of 82.425, and a 95th percentile anomaly threshold of 265.63. These results demonstrate the models' effectiveness in accurately predicting vehicle trajectories and detecting anomalies in autonomous driving scenarios.
- Abstract(参考訳): 接続された自動運転車(CAV)の異常検出は、センサの故障、サイバー攻撃、予期せぬ環境破壊の影響を受けやすいため、安全で信頼性の高い輸送ネットワークを維持するために不可欠である。
本研究では、車両の挙動をシミュレートし、典型的および非典型的な車両間の相互作用を表すデータセットを生成する異常検出手法について検討する。
このデータセットには、複数の接続された自動運転車の位置、速度、加速度の時系列データが含まれている。
機械学習モデルを用いて、異常運転パターンを効果的に同定した。
まず、時間的依存関係とシーケンスベースの異常をキャプチャするために、LSTM(Long Short-Term Memory)モデルを適用した。
積み重ねられたLSTMモデルはシーケンシャルデータを処理し、標準的な運転動作を学習した。
さらに,ランダムフォレストモデルを導入して,アンサンブルに基づく予測を提供することで異常検出を支援することにより,モデルの解釈可能性と性能を向上させる。
ランダムフォレストモデルでは、R2は0.9830、MAEは5.746、95%は14.18であり、LSTMモデルは0.9998、MAEは82.425、95%は265.63である。
これらの結果は、車両軌道を正確に予測し、自律走行シナリオにおける異常を検出するモデルの有効性を示す。
関連論文リスト
- Explore the Use of Time Series Foundation Model for Car-Following Behavior Analysis [0.0]
自動車追従行動のモデル化は、交通シミュレーション、運転パターンの分析、複雑な交通の流れの理解に不可欠である。
機械学習とディープラーニングは複雑なパターンをキャプチャするが、大きなラベル付きデータセットが必要である。
ファンデーションモデルは、膨大な多様な時系列データセットに基づいて事前訓練された、より効率的な代替手段を提供する。
論文 参考訳(メタデータ) (2025-01-13T03:13:32Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
マルチエージェントインタラクションをキャプチャする実世界のモーションプランニングベンチマークであるnuPlanを提案する。
我々は、グラフ畳み込みニューラルネットワーク(GCNN)であるBehaviorNetを用いて、このようなユニークな振る舞いをモデル化することを学ぶ。
また、モデル予測制御(MPC)ベースのプランナであるAdaptiveDriverについても紹介する。
論文 参考訳(メタデータ) (2024-06-15T18:53:45Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
自動運転開発における長年の課題は、記録された運転ログからシードされた動的運転シナリオをシミュレートすることだ。
車両、歩行者、サイクリストが運転シナリオでどのように相互作用するかをモデル化するために、離散シーケンスモデリングのツールを適用します。
我々のモデルはSim Agents Benchmarkを上回り、リアリズムメタメトリックの先行作業の3.3%、インタラクションメトリックの9.9%を上回ります。
論文 参考訳(メタデータ) (2023-12-07T18:53:27Z) - Robustness Benchmark of Road User Trajectory Prediction Models for
Automated Driving [0.0]
車両内のモデル展開中に観測される機能不全をシミュレートする摂動に対して、機械学習モデルをベンチマークする。
同様の摂動を持つモデルのトレーニングは、パフォーマンスの劣化を効果的に低減し、エラーは+87.5%まで増加する。
効果的な緩和戦略であるにもかかわらず、トレーニング中の摂動によるデータ拡張は、予期せぬ摂動に対する堅牢性を保証するものではない、と我々は主張する。
論文 参考訳(メタデータ) (2023-04-04T15:47:42Z) - Driver Maneuver Detection and Analysis using Time Series Segmentation
and Classification [7.413735713939367]
本稿では,自然主義運転環境下での車両遠隔計測データから車両の操作を自動的に検出する手法を実装した。
本研究の目的は、自然主義駆動学習ビデオのフレーム・バイ・フレームアノテーションのためのエンドツーエンドパイプラインを開発することである。
論文 参考訳(メタデータ) (2022-11-10T03:38:50Z) - Anomaly Detection in Multi-Agent Trajectories for Automated Driving [2.5211566369910967]
人間と同様、自動走行車は異常検出を行う。
私たちの革新は、動的エージェントの複数の軌道を共同で学習する能力です。
論文 参考訳(メタデータ) (2021-10-15T08:07:31Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - A Driving Behavior Recognition Model with Bi-LSTM and Multi-Scale CNN [59.57221522897815]
運転行動認識のための軌道情報に基づくニューラルネットワークモデルを提案する。
提案手法を公開BLVDデータセット上で評価し,満足な性能を実現する。
論文 参考訳(メタデータ) (2021-03-01T06:47:29Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Self-awareness in intelligent vehicles: Feature based dynamic Bayesian
models for abnormality detection [4.251384905163326]
本稿では,自律走行車における自己認識性向上のための新しい手法を提案する。
車両からの時系列データは、データ駆動型動的ベイズネットワーク(DBN)モデルの開発に使用される。
協調作業における共同異常検出が可能な初期レベル集団認識モデルを提案する。
論文 参考訳(メタデータ) (2020-10-29T09:29:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。