Looking Beyond What You See: An Empirical Analysis on Subgroup Intersectional Fairness for Multi-label Chest X-ray Classification Using Social Determinants of Racial Health Inequities
- URL: http://arxiv.org/abs/2403.18196v1
- Date: Wed, 27 Mar 2024 02:13:20 GMT
- Title: Looking Beyond What You See: An Empirical Analysis on Subgroup Intersectional Fairness for Multi-label Chest X-ray Classification Using Social Determinants of Racial Health Inequities
- Authors: Dana Moukheiber, Saurabh Mahindre, Lama Moukheiber, Mira Moukheiber, Mingchen Gao,
- Abstract summary: Inherited biases in deep learning models can lead to disparities in prediction accuracy across protected groups.
We propose a framework to achieve accurate diagnostic outcomes and ensure fairness across intersectional groups.
- Score: 4.351859373879489
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There has been significant progress in implementing deep learning models in disease diagnosis using chest X- rays. Despite these advancements, inherent biases in these models can lead to disparities in prediction accuracy across protected groups. In this study, we propose a framework to achieve accurate diagnostic outcomes and ensure fairness across intersectional groups in high-dimensional chest X- ray multi-label classification. Transcending traditional protected attributes, we consider complex interactions within social determinants, enabling a more granular benchmark and evaluation of fairness. We present a simple and robust method that involves retraining the last classification layer of pre-trained models using a balanced dataset across groups. Additionally, we account for fairness constraints and integrate class-balanced fine-tuning for multi-label settings. The evaluation of our method on the MIMIC-CXR dataset demonstrates that our framework achieves an optimal tradeoff between accuracy and fairness compared to baseline methods.
Related papers
- LTCXNet: Advancing Chest X-Ray Analysis with Solutions for Long-Tailed Multi-Label Classification and Fairness Challenges [4.351007758390175]
Pruned MIMIC-CXR-LT dataset is designed to represent a long-tailed and multi-label data scenario.
We introduce LTCXNet, a novel framework that integrates the ConvNeXt model, ML-Decoder, and strategic data augmentation.
arXiv Detail & Related papers (2024-11-16T08:59:20Z) - Refining Tuberculosis Detection in CXR Imaging: Addressing Bias in Deep Neural Networks via Interpretability [1.9936075659851882]
We argue that the reliability of deep learning models is limited, even if they can be shown to obtain perfect classification accuracy on the test data.
We show that pre-training a deep neural network on a large-scale proxy task, as well as using mixed objective optimization network (MOON), can improve the alignment of decision foundations between models and experts.
arXiv Detail & Related papers (2024-07-19T06:41:31Z) - Bag of Tricks for Long-Tailed Multi-Label Classification on Chest X-Rays [40.11576642444264]
This report presents a brief description of our solution in the ICCV CVAMD 2023 CXR-LT Competition.
We empirically explored the effectiveness for CXR diagnosis with the integration of several advanced designs.
Our framework finally achieves 0.349 mAP on the competition test set, ranking in the top five.
arXiv Detail & Related papers (2023-08-17T08:25:55Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Improving the Fairness of Chest X-ray Classifiers [19.908277166053185]
We ask whether striving to achieve zero disparities in predictive performance (i.e. group fairness) is the appropriate fairness definition in the clinical setting.
We find, consistent with prior work on non-clinical data, that methods which strive to achieve better worst-group performance do not outperform simple data balancing.
arXiv Detail & Related papers (2022-03-23T17:56:58Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
We propose an adversarial multi-task training strategy to simultaneously mitigate and detect bias in the deep learning-based medical image analysis system.
Specifically, we propose to add a discrimination module against bias and a critical module that predicts unfairness within the base classification model.
We evaluate our framework on a large-scale public-available skin lesion dataset.
arXiv Detail & Related papers (2021-03-07T03:10:32Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Minimax Pareto Fairness: A Multi Objective Perspective [24.600419295290504]
Group fairness is a multi-objective optimization problem, where each sensitive group risk is a separate objective.
We provide a simple algorithm compatible with deep neural networks to satisfy these constraints.
We test the proposed methodology on real case-studies of predicting income, ICU patient mortality, skin lesions classification, and assessing credit risk.
arXiv Detail & Related papers (2020-11-03T16:21:53Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.