Real-time Image-based Lighting of Glints
- URL: http://arxiv.org/abs/2507.02674v1
- Date: Thu, 03 Jul 2025 14:38:37 GMT
- Title: Real-time Image-based Lighting of Glints
- Authors: Tom Kneiphof, Reinhard Klein,
- Abstract summary: A challenging scenario involves materials exhibiting a sparkling or glittering appearance, caused by discrete microfacets scattered across their surface.<n>We propose an efficient approximation for image-based lighting of glints, enabling fully dynamic material properties and environment maps.<n>Compared to rendering smooth materials without glints, our approach requires twice as much memory to store the prefiltered environment map.
- Score: 4.180435324231827
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image-based lighting is a widely used technique to reproduce shading under real-world lighting conditions, especially in real-time rendering applications. A particularly challenging scenario involves materials exhibiting a sparkling or glittering appearance, caused by discrete microfacets scattered across their surface. In this paper, we propose an efficient approximation for image-based lighting of glints, enabling fully dynamic material properties and environment maps. Our novel approach is grounded in real-time glint rendering under area light illumination and employs standard environment map filtering techniques. Crucially, our environment map filtering process is sufficiently fast to be executed on a per-frame basis. Our method assumes that the environment map is partitioned into few homogeneous regions of constant radiance. By filtering the corresponding indicator functions with the normal distribution function, we obtain the probabilities for individual microfacets to reflect light from each region. During shading, these probabilities are utilized to hierarchically sample a multinomial distribution, facilitated by our novel dual-gated Gaussian approximation of binomial distributions. We validate that our real-time approximation is close to ground-truth renderings for a range of material properties and lighting conditions, and demonstrate robust and stable performance, with little overhead over rendering glints from a single directional light. Compared to rendering smooth materials without glints, our approach requires twice as much memory to store the prefiltered environment map.
Related papers
- DifFRelight: Diffusion-Based Facial Performance Relighting [12.909429637057343]
We present a novel framework for free-viewpoint facial performance relighting using diffusion-based image-to-image translation.
We train a diffusion model for precise lighting control, enabling high-fidelity relit facial images from flat-lit inputs.
The model accurately reproduces complex lighting effects like eye reflections, subsurface scattering, self-shadowing, and translucency.
arXiv Detail & Related papers (2024-10-10T17:56:44Z) - GIR: 3D Gaussian Inverse Rendering for Relightable Scene Factorization [62.13932669494098]
This paper presents a 3D Gaussian Inverse Rendering (GIR) method, employing 3D Gaussian representations to factorize the scene into material properties, light, and geometry.
We compute the normal of each 3D Gaussian using the shortest eigenvector, with a directional masking scheme forcing accurate normal estimation without external supervision.
We adopt an efficient voxel-based indirect illumination tracing scheme that stores direction-aware outgoing radiance in each 3D Gaussian to disentangle secondary illumination for approximating multi-bounce light transport.
arXiv Detail & Related papers (2023-12-08T16:05:15Z) - SplitNeRF: Split Sum Approximation Neural Field for Joint Geometry,
Illumination, and Material Estimation [65.99344783327054]
We present a novel approach for digitizing real-world objects by estimating their geometry, material properties, and lighting.
Our method incorporates into Radiance Neural Field (NeRF) pipelines the split sum approximation used with image-based lighting for real-time physical-based rendering.
Our method is capable of attaining state-of-the-art relighting quality after only $sim1$ hour of training in a single NVIDIA A100 GPU.
arXiv Detail & Related papers (2023-11-28T10:36:36Z) - Diffusion Posterior Illumination for Ambiguity-aware Inverse Rendering [63.24476194987721]
Inverse rendering, the process of inferring scene properties from images, is a challenging inverse problem.
Most existing solutions incorporate priors into the inverse-rendering pipeline to encourage plausible solutions.
We propose a novel scheme that integrates a denoising probabilistic diffusion model pre-trained on natural illumination maps into an optimization framework.
arXiv Detail & Related papers (2023-09-30T12:39:28Z) - NeFII: Inverse Rendering for Reflectance Decomposition with Near-Field
Indirect Illumination [48.42173911185454]
Inverse rendering methods aim to estimate geometry, materials and illumination from multi-view RGB images.
We propose an end-to-end inverse rendering pipeline that decomposes materials and illumination from multi-view images.
arXiv Detail & Related papers (2023-03-29T12:05:19Z) - NeILF: Neural Incident Light Field for Physically-based Material
Estimation [31.230609753253713]
We present a differentiable rendering framework for material and lighting estimation from multi-view images and a reconstructed geometry.
In the framework, we represent scene lightings as the Neural Incident Light Field (NeILF) and material properties as the surface BRDF modelled by multi-layer perceptrons.
arXiv Detail & Related papers (2022-03-14T15:23:04Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z) - Light Stage Super-Resolution: Continuous High-Frequency Relighting [58.09243542908402]
We propose a learning-based solution for the "super-resolution" of scans of human faces taken from a light stage.
Our method aggregates the captured images corresponding to neighboring lights in the stage, and uses a neural network to synthesize a rendering of the face.
Our learned model is able to produce renderings for arbitrary light directions that exhibit realistic shadows and specular highlights.
arXiv Detail & Related papers (2020-10-17T23:40:43Z) - Towards Geometry Guided Neural Relighting with Flash Photography [26.511476565209026]
We propose a framework for image relighting from a single flash photograph with its corresponding depth map using deep learning.
We experimentally validate the advantage of our geometry guided approach over state-of-the-art image-based approaches in intrinsic image decomposition and image relighting.
arXiv Detail & Related papers (2020-08-12T08:03:28Z) - Deep Lighting Environment Map Estimation from Spherical Panoramas [0.0]
We present a data-driven model that estimates an HDR lighting environment map from a single LDR monocular spherical panorama.
We exploit the availability of surface geometry to employ image-based relighting as a data generator and supervision mechanism.
arXiv Detail & Related papers (2020-05-16T14:23:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.