Graph Learning
- URL: http://arxiv.org/abs/2507.05636v1
- Date: Tue, 08 Jul 2025 03:29:27 GMT
- Title: Graph Learning
- Authors: Feng Xia, Ciyuan Peng, Jing Ren, Falih Gozi Febrinanto, Renqiang Luo, Vidya Saikrishna, Shuo Yu, Xiangjie Kong,
- Abstract summary: Graph learning has rapidly evolved into a critical subfield of machine learning and artificial intelligence (AI)<n>This survey focuses on key dimensions including scalable, temporal, multimodal, generative, explainable, and responsible graph learning.<n>We also explore ethical considerations, such as privacy and fairness, to ensure responsible deployment of graph learning models.
- Score: 16.916717864896007
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph learning has rapidly evolved into a critical subfield of machine learning and artificial intelligence (AI). Its development began with early graph-theoretic methods, gaining significant momentum with the advent of graph neural networks (GNNs). Over the past decade, progress in scalable architectures, dynamic graph modeling, multimodal learning, generative AI, explainable AI (XAI), and responsible AI has broadened the applicability of graph learning to various challenging environments. Graph learning is significant due to its ability to model complex, non-Euclidean relationships that traditional machine learning struggles to capture, thus better supporting real-world applications ranging from drug discovery and fraud detection to recommender systems and scientific reasoning. However, challenges like scalability, generalization, heterogeneity, interpretability, and trustworthiness must be addressed to unlock its full potential. This survey provides a comprehensive introduction to graph learning, focusing on key dimensions including scalable, temporal, multimodal, generative, explainable, and responsible graph learning. We review state-of-the-art techniques for efficiently handling large-scale graphs, capturing dynamic temporal dependencies, integrating heterogeneous data modalities, generating novel graph samples, and enhancing interpretability to foster trust and transparency. We also explore ethical considerations, such as privacy and fairness, to ensure responsible deployment of graph learning models. Additionally, we identify and discuss emerging topics, highlighting recent integration of graph learning and other AI paradigms and offering insights into future directions. This survey serves as a valuable resource for researchers and practitioners seeking to navigate the rapidly evolving landscape of graph learning.
Related papers
- Insights from Network Science can advance Deep Graph Learning [1.8249324194382754]
We discuss challenges in deep graph learning, including data augmentation, improved evaluation practices, higher-order models, and pooling methods.<n>We highlight challenges in network science, including scaling to massive graphs, integrating continuous gradient-based optimization, and developing standardized benchmarks.
arXiv Detail & Related papers (2025-02-03T09:11:35Z) - Neural-Symbolic Reasoning over Knowledge Graphs: A Survey from a Query Perspective [55.79507207292647]
Knowledge graph reasoning is pivotal in various domains such as data mining, artificial intelligence, the Web, and social sciences.<n>The rise of Neural AI marks a significant advancement, merging the robustness of deep learning with the precision of symbolic reasoning.<n>The advent of large language models (LLMs) has opened new frontiers in knowledge graph reasoning.
arXiv Detail & Related papers (2024-11-30T18:54:08Z) - When Graph Data Meets Multimodal: A New Paradigm for Graph Understanding
and Reasoning [54.84870836443311]
The paper presents a new paradigm for understanding and reasoning about graph data by integrating image encoding and multimodal technologies.
This approach enables the comprehension of graph data through an instruction-response format, utilizing GPT-4V's advanced capabilities.
The study evaluates this paradigm on various graph types, highlighting the model's strengths and weaknesses, particularly in Chinese OCR performance and complex reasoning tasks.
arXiv Detail & Related papers (2023-12-16T08:14:11Z) - Graph Foundation Models: Concepts, Opportunities and Challenges [66.37994863159861]
Foundation models have emerged as critical components in a variety of artificial intelligence applications.<n>The capabilities of foundation models in generalization and adaptation motivate graph machine learning researchers to discuss the potential of developing a new graph learning paradigm.<n>This article introduces the concept of Graph Foundation Models (GFMs), and offers an exhaustive explanation of their key characteristics and underlying technologies.
arXiv Detail & Related papers (2023-10-18T09:31:21Z) - A Survey of Graph Unlearning [12.86327535559885]
Graph unlearning provides the means to remove sensitive data traces from trained models, upholding the right to be forgotten.
We present the first systematic review of graph unlearning approaches, encompassing a diverse array of methodologies.
We explore the versatility of graph unlearning across various domains, including but not limited to social networks, recommender systems, and resource-constrained environments like the Internet of Things.
arXiv Detail & Related papers (2023-08-23T20:50:52Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Graph Learning and Its Advancements on Large Language Models: A Holistic Survey [37.01696685233113]
This survey focuses on the most recent advancements in integrating graph learning with pre-trained language models.
We provide a holistic review that analyzes current works from the perspective of graph structure, and discusses the latest applications, trends, and challenges in graph learning.
arXiv Detail & Related papers (2022-12-17T22:05:07Z) - Hyperbolic Graph Learning: A Comprehensive Review [56.53820115624101]
This survey paper provides a comprehensive review of the rapidly evolving field of Hyperbolic Graph Learning (HGL)<n>We systematically categorize and analyze existing methods dividing them into (1) hyperbolic graph embedding-based techniques, (2) graph neural network-based hyperbolic models, and (3) emerging paradigms.<n>We extensively discuss diverse applications of HGL across multiple domains, including recommender systems, knowledge graphs, bioinformatics, and other relevant scenarios.
arXiv Detail & Related papers (2022-02-28T15:08:48Z) - Graph Lifelong Learning: A Survey [6.545297572977323]
This paper focuses on the motivations, potentials, state-of-the-art approaches, and open issues of graph lifelong learning.
We expect extensive research and development interest in this emerging field.
arXiv Detail & Related papers (2022-02-22T06:14:07Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
We first propose a taxonomy for graph data augmentation and then provide a structured review by categorizing the related work based on the augmented information modalities.
Focusing on the two challenging problems in DGL (i.e., optimal graph learning and low-resource graph learning), we also discuss and review the existing learning paradigms which are based on graph data augmentation.
arXiv Detail & Related papers (2022-02-16T18:30:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.