Hierarchical Interaction Summarization and Contrastive Prompting for Explainable Recommendations
- URL: http://arxiv.org/abs/2507.06044v1
- Date: Tue, 08 Jul 2025 14:45:47 GMT
- Title: Hierarchical Interaction Summarization and Contrastive Prompting for Explainable Recommendations
- Authors: Yibin Liu, Ang Li, Shijian Li,
- Abstract summary: We propose a novel approach combining profile generation via hierarchical interaction summarization (PGHIS) with contrastive prompting for explanation generation (CPEG)<n>Our approach outperforms existing state-of-the-art methods, achieving a great improvement on metrics about explainability (e.g., 5% on GPTScore) and text quality.
- Score: 9.082885521130617
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Explainable recommendations, which use the information of user and item with interaction to generate a explanation for why the user would interact with the item, are crucial for improving user trust and decision transparency to the recommender system. Existing methods primarily rely on encoding features of users and items to embeddings, which often leads to information loss due to dimensionality reduction, sparse interactions, and so on. With the advancements of large language models (LLMs) in language comprehension, some methods use embeddings as LLM inputs for explanation generation. However, since embeddings lack inherent semantics, LLMs must adjust or extend their parameters to interpret them, a process that inevitably incurs information loss. To address this issue, we propose a novel approach combining profile generation via hierarchical interaction summarization (PGHIS), which leverages a pretrained LLM to hierarchically summarize user-item interactions, generating structured textual profiles as explicit representations of user and item characteristics. Additionally, we propose contrastive prompting for explanation generation (CPEG) which employs contrastive learning to guide another reasoning language models in producing high-quality ground truth recommendation explanations. Finally, we use the textual profiles of user and item as input and high-quality explanation as output to fine-tune a LLM for generating explanations. Experimental results on multiple datasets demonstrate that our approach outperforms existing state-of-the-art methods, achieving a great improvement on metrics about explainability (e.g., 5% on GPTScore) and text quality. Furthermore, our generated ground truth explanations achieve a significantly higher win rate compared to user-written reviews and those produced by other methods, demonstrating the effectiveness of CPEG in generating high-quality ground truths.
Related papers
- FIRE: Faithful Interpretable Recommendation Explanations [2.6499018693213316]
Natural language explanations in recommender systems are often framed as a review generation task.<n>Fire is a lightweight and interpretable framework that combines SHAP-based feature attribution with structured, prompt-driven language generation.<n>Our results demonstrate that FIRE not only achieves competitive recommendation accuracy but also significantly improves explanation quality along critical dimensions such as alignment, structure, and faithfulness.
arXiv Detail & Related papers (2025-08-07T10:11:02Z) - Language Bottleneck Models: A Framework for Interpretable Knowledge Tracing and Beyond [55.984684518346924]
We recast Knowledge Tracing as an inverse problem: learning the minimum natural-language summary that makes past answers explainable and future answers predictable.<n>Our Language Bottleneck Model (LBM) consists of an encoder LLM that writes an interpretable knowledge summary and a frozen decoder LLM that must reconstruct and predict student responses using only that summary text.<n> Experiments on synthetic arithmetic benchmarks and the large-scale Eedi dataset show that LBMs rival the accuracy of state-of-the-art KT and direct LLM methods while requiring orders-of-magnitude fewer student trajectories.
arXiv Detail & Related papers (2025-06-20T13:21:14Z) - Towards Explainable Temporal User Profiling with LLMs [3.719862246745416]
We leverage large language models (LLMs) to generate natural language summaries of users' interaction histories.<n>Our framework not only models temporal user preferences but also produces natural language profiles that can be used to explain recommendations in an interpretable manner.
arXiv Detail & Related papers (2025-05-01T22:02:46Z) - Training Large Recommendation Models via Graph-Language Token Alignment [53.3142545812349]
We propose a novel framework to train Large Recommendation models via Graph-Language Token Alignment.<n>By aligning item and user nodes from the interaction graph with pretrained LLM tokens, GLTA effectively leverages the reasoning abilities of LLMs.<n> Furthermore, we introduce Graph-Language Logits Matching (GLLM) to optimize token alignment for end-to-end item prediction.
arXiv Detail & Related papers (2025-02-26T02:19:10Z) - G-Refer: Graph Retrieval-Augmented Large Language Model for Explainable Recommendation [48.23263809469786]
We propose a framework using graph retrieval-augmented large language models (LLMs) for explainable recommendation.<n>G-Refer achieves superior performance compared with existing methods in both explainability and stability.
arXiv Detail & Related papers (2025-02-18T06:42:38Z) - Eliciting Causal Abilities in Large Language Models for Reasoning Tasks [14.512834333917414]
We introduce the Self-Causal Instruction Enhancement (SCIE) method, which enables LLMs to generate high-quality, low-quantity observational data.<n>In SCIE, the instructions are treated as the treatment, and textual features are used to process natural language.<n>Our method effectively generates instructions that enhance reasoning performance with reduced training cost of prompts.
arXiv Detail & Related papers (2024-12-19T17:03:02Z) - Con-ReCall: Detecting Pre-training Data in LLMs via Contrastive Decoding [118.75567341513897]
Existing methods typically analyze target text in isolation or solely with non-member contexts.<n>We propose Con-ReCall, a novel approach that leverages the asymmetric distributional shifts induced by member and non-member contexts.
arXiv Detail & Related papers (2024-09-05T09:10:38Z) - MAPLE: Enhancing Review Generation with Multi-Aspect Prompt LEarning in Explainable Recommendation [12.68667064916211]
We propose a personalized, aspect-controlled model called Multi-Aspect Prompt LEarner (MAPLE)<n>Experiments conducted on two real-world review datasets in the restaurant domain demonstrate that MAPLE significantly outperforms baseline review-generation models.
arXiv Detail & Related papers (2024-08-19T10:12:52Z) - ELCoRec: Enhance Language Understanding with Co-Propagation of Numerical and Categorical Features for Recommendation [38.64175351885443]
Large language models have been flourishing in the natural language processing (NLP) domain.
Despite the intelligence shown by the recommendation-oriented finetuned models, LLMs struggle to fully understand the user behavior patterns.
Existing works only fine-tune a sole LLM on given text data without introducing that important information to it.
arXiv Detail & Related papers (2024-06-27T01:37:57Z) - Prompt Optimization via Adversarial In-Context Learning [51.18075178593142]
adv-ICL is implemented as a two-player game between a generator and a discriminator.
The generator tries to generate realistic enough output to fool the discriminator.
We show that adv-ICL results in significant improvements over state-of-the-art prompt optimization techniques.
arXiv Detail & Related papers (2023-12-05T09:44:45Z) - RecExplainer: Aligning Large Language Models for Explaining Recommendation Models [50.74181089742969]
Large language models (LLMs) have demonstrated remarkable intelligence in understanding, reasoning, and instruction following.
This paper presents the initial exploration of using LLMs as surrogate models to explain black-box recommender models.
To facilitate an effective alignment, we introduce three methods: behavior alignment, intention alignment, and hybrid alignment.
arXiv Detail & Related papers (2023-11-18T03:05:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.