論文の概要: Fast Gaussian Processes under Monotonicity Constraints
- arxiv url: http://arxiv.org/abs/2507.06677v1
- Date: Wed, 09 Jul 2025 09:09:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-10 17:37:43.536591
- Title: Fast Gaussian Processes under Monotonicity Constraints
- Title(参考訳): 単調性制約下における高速ガウス過程
- Authors: Chao Zhang, Jasper M. Everink, Jakob Sauer Jørgensen,
- Abstract要約: 単調性制約下での制約付きGPモデル構築のための新しい仮想点ベースフレームワークを提案する。
このフレームワークは微分方程式系の代理モデルを構築するためにさらに応用される。
- 参考スコア(独自算出の注目度): 4.184089306037526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian processes (GPs) are widely used as surrogate models for complicated functions in scientific and engineering applications. In many cases, prior knowledge about the function to be approximated, such as monotonicity, is available and can be leveraged to improve model fidelity. Incorporating such constraints into GP models enhances predictive accuracy and reduces uncertainty, but remains a computationally challenging task for high-dimensional problems. In this work, we present a novel virtual point-based framework for building constrained GP models under monotonicity constraints, based on regularized linear randomize-then-optimize (RLRTO), which enables efficient sampling from a constrained posterior distribution by means of solving randomized optimization problems. We also enhance two existing virtual point-based approaches by replacing Gibbs sampling with the No U-Turn Sampler (NUTS) for improved efficiency. A Python implementation of these methods is provided and can be easily applied to a wide range of problems. This implementation is then used to validate the approaches on approximating a range of synthetic functions, demonstrating comparable predictive performance between all considered methods and significant improvements in computational efficiency with the two NUTS methods and especially with the RLRTO method. The framework is further applied to construct surrogate models for systems of differential equations.
- Abstract(参考訳): ガウス過程(GP)は、科学や工学の応用において複雑な関数の代理モデルとして広く用いられている。
多くの場合、単調性のような近似関数に関する事前知識が利用可能であり、モデルの忠実性を改善するために利用することができる。
このような制約をGPモデルに組み込むことは予測精度を高め、不確実性を低減させるが、高次元問題に対する計算的に難しい課題である。
本研究では,正規化線形乱数化最適化(RLRTO)に基づいて,制約付きGPモデルを構築するための新しい仮想点ベースフレームワークを提案する。
また,Gibs サンプリングを No U-Turn Sampler (NUTS) に置き換えて効率を向上させることで,既存の仮想点ベースアプローチを2つ拡張する。
これらの手法のPython実装が提供され、幅広い問題に容易に適用できる。
この実装は、様々な合成関数を近似するアプローチを検証するために使用され、全ての検討された手法間で同等の予測性能を示し、2つのNUTS法、特にRLRTO法で計算効率を大幅に改善した。
このフレームワークは微分方程式系の代理モデルを構築するためにさらに応用される。
関連論文リスト
- Sample-efficient Bayesian Optimisation Using Known Invariances [56.34916328814857]
バニラと制約付きBOアルゴリズムは、不変目的を最適化する際の非効率性を示す。
我々はこれらの不変カーネルの最大情報ゲインを導出する。
核融合炉用電流駆動システムの設計に本手法を用い, 高性能溶液の探索を行った。
論文 参考訳(メタデータ) (2024-10-22T12:51:46Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
我々は,非平均場(NMF)変動推定フレームワークにアンサンブルカルマンフィルタ(EnKF)を導入し,潜在状態の後方分布を近似する。
EnKFとGPSSMのこの新しい結婚は、変分分布の学習における広範なパラメータ化の必要性をなくすだけでなく、エビデンスの下限(ELBO)の解釈可能でクローズドな近似を可能にする。
得られたEnKF支援オンラインアルゴリズムは、データ適合精度を確保しつつ、モデル正規化を組み込んで過度適合を緩和し、目的関数を具現化する。
論文 参考訳(メタデータ) (2023-12-10T15:22:30Z) - A Deep Unrolling Model with Hybrid Optimization Structure for Hyperspectral Image Deconvolution [50.13564338607482]
本稿では,DeepMixと呼ばれるハイパースペクトルデコンボリューション問題に対する新しい最適化フレームワークを提案する。
これは3つの異なるモジュール、すなわちデータ一貫性モジュール、手作りの正規化器の効果を強制するモジュール、および装飾モジュールで構成されている。
本研究は,他のモジュールの協調作業によって達成される進歩を維持するために設計された,文脈を考慮した認知型モジュールを提案する。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - No-Regret Constrained Bayesian Optimization of Noisy and Expensive
Hybrid Models using Differentiable Quantile Function Approximations [0.0]
Constrained Upper Quantile Bound (CUQB) は、制約近似を避けるための概念的に単純で決定論的アプローチである。
CUQBは制約のある場合と制約のない場合の両方において従来のベイズ最適化よりも著しく優れることを示す。
論文 参考訳(メタデータ) (2023-05-05T19:57:36Z) - RMFGP: Rotated Multi-fidelity Gaussian process with Dimension Reduction
for High-dimensional Uncertainty Quantification [12.826754199680474]
マルチフィデリティモデリングは、少量の正確なデータしか入手できない場合でも、正確な推測を可能にする。
高忠実度モデルと1つ以上の低忠実度モデルを組み合わせることで、多忠実度法は興味のある量の正確な予測を行うことができる。
本稿では,回転多要素ガウス過程の回帰に基づく新しい次元削減フレームワークとベイズ能動学習手法を提案する。
論文 参考訳(メタデータ) (2022-04-11T01:20:35Z) - Approximate Bayesian inference from noisy likelihoods with Gaussian
process emulated MCMC [0.24275655667345403]
ガウス過程(GP)を用いた対数様関数をモデル化する。
主な方法論的革新は、正確なメトロポリス・ハスティングス(MH)サンプリングが行う進歩をエミュレートするためにこのモデルを適用することである。
得られた近似サンプリング器は概念的には単純で、試料効率が高い。
論文 参考訳(メタデータ) (2021-04-08T17:38:02Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。