論文の概要: Scalable Gaussian Processes: Advances in Iterative Methods and Pathwise Conditioning
- arxiv url: http://arxiv.org/abs/2507.06839v1
- Date: Wed, 09 Jul 2025 13:39:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-10 17:37:43.600151
- Title: Scalable Gaussian Processes: Advances in Iterative Methods and Pathwise Conditioning
- Title(参考訳): スケーラブルガウス過程:反復法とパスワイズ条件付けの進歩
- Authors: Jihao Andreas Lin,
- Abstract要約: この論文は、反復的手法と経路的条件付けの強力な組み合わせに焦点を当て、方法論的コントリビューションを開発する。
これら2つの手法を組み合わせることで、高価な計算を線形方程式系の解として表現し、反復線形系解法を利用して得られる。
これにより、メモリ要求が大幅に削減され、アプリケーションが大幅にデータ量を増やすことが容易になり、行列乗算が主計算演算として導入される。
- 参考スコア(独自算出の注目度): 0.26107298043931204
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaussian processes are a powerful framework for uncertainty-aware function approximation and sequential decision-making. Unfortunately, their classical formulation does not scale gracefully to large amounts of data and modern hardware for massively-parallel computation, prompting many researchers to develop techniques which improve their scalability. This dissertation focuses on the powerful combination of iterative methods and pathwise conditioning to develop methodological contributions which facilitate the use of Gaussian processes in modern large-scale settings. By combining these two techniques synergistically, expensive computations are expressed as solutions to systems of linear equations and obtained by leveraging iterative linear system solvers. This drastically reduces memory requirements, facilitating application to significantly larger amounts of data, and introduces matrix multiplication as the main computational operation, which is ideal for modern hardware.
- Abstract(参考訳): ガウス過程は不確実性を考慮した関数近似とシーケンシャルな意思決定のための強力なフレームワークである。
残念なことに、彼らの古典的な定式化は大量のデータや並列計算のための現代的なハードウェアに優雅にスケールしないため、多くの研究者がスケーラビリティを向上させる技術を開発することになった。
この論文は、反復的手法と経路的条件付けの強力な組み合わせに焦点を当て、現代の大規模環境でのガウス的プロセスの使用を容易にする方法論的コントリビューションを開発する。
これら2つの手法を相乗的に組み合わせることで、高価な計算を線形方程式系の解として表現し、反復線形系解法を利用して得られる。
これによりメモリ要求が大幅に削減され、アプリケーションが大幅にデータ量を増やすことが容易になり、現代のハードウェアに理想的な行列乗算が主計算演算として導入される。
関連論文リスト
- A quantum gradient descent algorithm for optimizing Gaussian Process models [28.16587217223671]
ガウス過程モデルを最適化するための量子勾配降下アルゴリズムを提案する。
本アルゴリズムは,ログ限界確率の勾配の計算において指数的高速化を実現する。
論文 参考訳(メタデータ) (2025-03-22T14:14:31Z) - Linearly Convergent Mixup Learning [0.0]
より広い範囲のバイナリ分類モデルに拡張する2つの新しいアルゴリズムを提案する。
勾配に基づくアプローチとは異なり、我々のアルゴリズムは学習率のようなハイパーパラメータを必要とせず、実装と最適化を単純化する。
我々のアルゴリズムは、降下勾配法と比較して最適解への高速収束を実現し、ミックスアップデータの増大は、様々な損失関数の予測性能を一貫して改善する。
論文 参考訳(メタデータ) (2025-01-14T02:33:40Z) - Deep Learning-Enhanced Preconditioning for Efficient Conjugate Gradient Solvers in Large-Scale PDE Systems [11.712093849918123]
本稿では,グラフニューラルネットワーク(GNN)と従来のICを統合する新しい手法を提案する。
実験の結果、ICと比較してイテレーションの回数が平均24.8%減少した。
このアプローチは、スケールにわたる堅牢な一般化能力を実証する。
論文 参考訳(メタデータ) (2024-12-10T02:34:13Z) - The Stochastic Conjugate Subgradient Algorithm For Kernel Support Vector Machines [1.738375118265695]
本稿では,カーネルサポートベクトルマシン(SVM)に特化して設計された革新的な手法を提案する。
イテレーション毎のイテレーションを高速化するだけでなく、従来のSFO技術と比較して収束度も向上する。
実験の結果,提案アルゴリズムはSFO法のスケーラビリティを維持できるだけでなく,潜在的に超越していることが示された。
論文 参考訳(メタデータ) (2024-07-30T17:03:19Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - GloptiNets: Scalable Non-Convex Optimization with Certificates [61.50835040805378]
本稿では,ハイパーキューブやトーラス上のスムーズな関数を扱う証明書を用いた非キューブ最適化手法を提案する。
スペクトルの減衰に固有の対象関数の正則性を活用することにより、正確な証明を取得し、高度で強力なニューラルネットワークを活用することができる。
論文 参考訳(メタデータ) (2023-06-26T09:42:59Z) - AI-enhanced iterative solvers for accelerating the solution of large
scale parametrized linear systems of equations [0.0]
本稿では、最新のMLツールを活用し、線形方程式系の反復解法をカスタマイズする。
その結果,従来の反復解法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-07-06T09:47:14Z) - Gaussian Processes and Statistical Decision-making in Non-Euclidean
Spaces [96.53463532832939]
我々はガウス過程の適用性を高める技術を開発した。
この観点から構築した効率的な近似を幅広く導入する。
非ユークリッド空間上のガウス過程モデルの集合を開発する。
論文 参考訳(メタデータ) (2022-02-22T01:42:57Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
機械学習はデータに対する深い洞察を与え、マシンが高品質な予測を行うことを可能にする。
ほとんどの高度な機械学習アプローチは、大規模なデータを扱う場合の膨大な時間コストに悩まされる。
大規模機械学習は、ビッグデータからパターンを、同等のパフォーマンスで効率的に学習することを目的としている。
論文 参考訳(メタデータ) (2020-08-10T06:07:52Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。