論文の概要: Neural networks leverage nominally quantum and post-quantum representations
- arxiv url: http://arxiv.org/abs/2507.07432v1
- Date: Thu, 10 Jul 2025 05:09:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-11 16:40:15.27946
- Title: Neural networks leverage nominally quantum and post-quantum representations
- Title(参考訳): ニューラルネットワークは名目上量子および後量子表現を活用する
- Authors: Paul M. Riechers, Thomas J. Elliott, Adam S. Shai,
- Abstract要約: 我々は、トランスフォーマーやRNNを含む深層ニューラルネットワークが、トレーニングデータの低次元生成モデルである「量子」と「後量子」についての信念を本質的に発見し、表現していることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that deep neural networks, including transformers and RNNs, pretrained as usual on next-token prediction, intrinsically discover and represent beliefs over 'quantum' and 'post-quantum' low-dimensional generative models of their training data -- as if performing iterative Bayesian updates over the latent state of this world model during inference as they observe more context. Notably, neural nets easily find these representation whereas there is no finite classical circuit that would do the job. The corresponding geometric relationships among neural activations induced by different input sequences are found to be largely independent of neural-network architecture. Each point in this geometry corresponds to a history-induced probability density over all possible futures, and the relative displacement of these points reflects the difference in mechanism and magnitude for how these distinct pasts affect the future.
- Abstract(参考訳): トランスフォーマーやRNNを含むディープニューラルネットワークは、次のトーケン予測で通常通りにトレーニングされ、トレーニングデータの「量子」と「量子」の低次元生成モデルに対する信念を本質的に発見し、表現している。
特に、ニューラルネットはこれらの表現を容易に見つけ出すが、ジョブを行う有限古典回路は存在しない。
異なる入力配列によって誘導されるニューラルアクティベーション間の対応する幾何学的関係は、ニューラル・ネットワーク・アーキテクチャに大きく依存している。
この幾何学における各点は、すべての可能な未来に対する歴史によって引き起こされる確率密度に対応しており、これらの点の相対的な変位は、これらの異なる過去が未来にどのように影響するかのメカニズムと大きさの違いを反映している。
関連論文リスト
- Concept-Guided Interpretability via Neural Chunking [54.73787666584143]
ニューラルネットワークは、トレーニングデータの規則性を反映した生の集団活動のパターンを示す。
本稿では,ラベルの可利用性と次元性に基づいて,これら新たな実体を抽出する3つの手法を提案する。
私たちの研究は、認知原則と自然主義的データの構造の両方を活用する、解釈可能性の新しい方向性を指し示しています。
論文 参考訳(メタデータ) (2025-05-16T13:49:43Z) - Discovering Chunks in Neural Embeddings for Interpretability [53.80157905839065]
本稿では, チャンキングの原理を応用して, 人工神経集団活動の解釈を提案する。
まず、この概念を正則性を持つ人工シーケンスを訓練したリカレントニューラルネットワーク(RNN)で実証する。
我々は、これらの状態に対する摂動が関連する概念を活性化または阻害すると共に、入力における概念に対応する同様の繰り返し埋め込み状態を特定する。
論文 参考訳(メタデータ) (2025-02-03T20:30:46Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - The role of data embedding in equivariant quantum convolutional neural
networks [2.255961793913651]
等変量子ニューラルネットワーク(EQNN)の性能に及ぼす古典量子埋め込みの影響について検討する。
等価な量子畳み込みニューラルネットワーク(QCNN)から得られた3種類の振幅埋め込みと、EQCNNの分類精度を数値的に比較する。
論文 参考訳(メタデータ) (2023-12-20T18:25:15Z) - A Spectral Theory of Neural Prediction and Alignment [8.65717258105897]
我々は、回帰からモデルと対象のスペクトル特性への一般化誤差を関連づける最近の理論的枠組みを用いる。
我々は、視覚的皮質活動を予測するディープニューラルネットワークを多数テストし、回帰によって測定された低ニューラルネットワーク予測誤差をもたらす複数のタイプのジオメトリーが存在することを示す。
論文 参考訳(メタデータ) (2023-09-22T12:24:06Z) - Deep learning of many-body observables and quantum information scrambling [0.0]
物理オブザーバブルの力学を学習する際のデータ駆動型ディープニューラルネットワークの能力が、量子情報のスクランブルとどのように相関するかを考察する。
ニューラルネットワークを用いて、モデルのパラメータからランダム量子回路における可観測物の進化へのマッピングを求める。
特定のタイプのリカレントニューラルネットワークは、局所的およびスクランブルされた状態の両方でトレーニングされたシステムサイズと時間ウィンドウ内での予測を一般化する上で非常に強力であることを示す。
論文 参考訳(メタデータ) (2023-02-09T13:14:10Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。