Pre-Trained AI Model Assisted Online Decision-Making under Missing Covariates: A Theoretical Perspective
- URL: http://arxiv.org/abs/2507.07852v1
- Date: Thu, 10 Jul 2025 15:33:27 GMT
- Title: Pre-Trained AI Model Assisted Online Decision-Making under Missing Covariates: A Theoretical Perspective
- Authors: Haichen Hu, David Simchi-Levi,
- Abstract summary: "Model elasticity" provides a unified way to characterize the regret incurred due to model imputation.<n>We show that under the missing at random (MAR) setting, it is possible to sequentially calibrate the pre-trained model.<n>Our analysis highlights the practical value of having an accurate pre-trained model in sequential decision-making tasks.
- Score: 12.160708336715489
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study a sequential contextual decision-making problem in which certain covariates are missing but can be imputed using a pre-trained AI model. From a theoretical perspective, we analyze how the presence of such a model influences the regret of the decision-making process. We introduce a novel notion called "model elasticity", which quantifies the sensitivity of the reward function to the discrepancy between the true covariate and its imputed counterpart. This concept provides a unified way to characterize the regret incurred due to model imputation, regardless of the underlying missingness mechanism. More surprisingly, we show that under the missing at random (MAR) setting, it is possible to sequentially calibrate the pre-trained model using tools from orthogonal statistical learning and doubly robust regression. This calibration significantly improves the quality of the imputed covariates, leading to much better regret guarantees. Our analysis highlights the practical value of having an accurate pre-trained model in sequential decision-making tasks and suggests that model elasticity may serve as a fundamental metric for understanding and improving the integration of pre-trained models in a wide range of data-driven decision-making problems.
Related papers
- On Equivariant Model Selection through the Lens of Uncertainty [49.137341292207]
Equivariant models leverage prior knowledge on symmetries to improve predictive performance, but misspecified architectural constraints can harm it instead.<n>We compare frequentist (via Conformal Prediction), Bayesian (via the marginal likelihood), and calibration-based measures to naive error-based evaluation.<n>We find that uncertainty metrics generally align with predictive performance, but Bayesian model evidence does so inconsistently.
arXiv Detail & Related papers (2025-06-23T13:35:06Z) - Joint Explainability-Performance Optimization With Surrogate Models for AI-Driven Edge Services [3.8688731303365533]
This paper explores the balance between the predictive accuracy of complex AI models and their approximation by surrogate ones.<n>We introduce a new algorithm based on multi-objective optimization (MOO) to simultaneously minimize both the complex model's prediction error and the error between its outputs and those of the surrogate.
arXiv Detail & Related papers (2025-03-10T19:04:09Z) - Selective Learning: Towards Robust Calibration with Dynamic Regularization [79.92633587914659]
Miscalibration in deep learning refers to there is a discrepancy between the predicted confidence and performance.
We introduce Dynamic Regularization (DReg) which aims to learn what should be learned during training thereby circumventing the confidence adjusting trade-off.
arXiv Detail & Related papers (2024-02-13T11:25:20Z) - Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
We consider a model-based reinforcement learning algorithm that infers the system dynamics from the available data and performs policy optimization on imaginary model rollouts.
This approach is vulnerable to exploiting model errors which can lead to catastrophic failures on the real system.
We show that better performance can be obtained with a single well-calibrated autoregressive model on the D4RL benchmark.
arXiv Detail & Related papers (2024-02-05T10:18:15Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Value-Distributional Model-Based Reinforcement Learning [59.758009422067]
Quantifying uncertainty about a policy's long-term performance is important to solve sequential decision-making tasks.
We study the problem from a model-based Bayesian reinforcement learning perspective.
We propose Epistemic Quantile-Regression (EQR), a model-based algorithm that learns a value distribution function.
arXiv Detail & Related papers (2023-08-12T14:59:19Z) - Post-hoc Uncertainty Learning using a Dirichlet Meta-Model [28.522673618527417]
We propose a novel Bayesian meta-model to augment pre-trained models with better uncertainty quantification abilities.
Our proposed method requires no additional training data and is flexible enough to quantify different uncertainties.
We demonstrate our proposed meta-model approach's flexibility and superior empirical performance on these applications.
arXiv Detail & Related papers (2022-12-14T17:34:11Z) - The Implicit Delta Method [61.36121543728134]
In this paper, we propose an alternative, the implicit delta method, which works by infinitesimally regularizing the training loss of uncertainty.
We show that the change in the evaluation due to regularization is consistent for the variance of the evaluation estimator, even when the infinitesimal change is approximated by a finite difference.
arXiv Detail & Related papers (2022-11-11T19:34:17Z) - Uncertainty estimation under model misspecification in neural network
regression [3.2622301272834524]
We study the effect of the model choice on uncertainty estimation.
We highlight that under model misspecification, aleatoric uncertainty is not properly captured.
arXiv Detail & Related papers (2021-11-23T10:18:41Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - A comprehensive study on the prediction reliability of graph neural
networks for virtual screening [0.0]
We investigate the effects of model architectures, regularization methods, and loss functions on the prediction performance and reliability of classification results.
Our result highlights that correct choice of regularization and inference methods is evidently important to achieve high success rate.
arXiv Detail & Related papers (2020-03-17T10:13:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.