Anyon-trions in atomically thin semiconductor heterostructures
- URL: http://arxiv.org/abs/2507.08933v2
- Date: Sun, 20 Jul 2025 11:48:26 GMT
- Title: Anyon-trions in atomically thin semiconductor heterostructures
- Authors: Nader Mostaan, Nathan Goldman, Ataç İmamoğlu, Fabian Grusdt,
- Abstract summary: We show that a long-lived, optically generated interlayer exciton can bind to a quasihole in a fractional quantum excitation Hall state, forming a composite excitation we term an anyon-trion.<n>An experimental realization based on photoluminescence from localized interlayer excitons in a quantum twisting microscope setup should allow for a direct optical observation of anyon-trions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The study of anyons in topologically ordered quantum systems has mainly relied on edge-state interferometry. However, realizing controlled braiding of anyons necessitates the ability to detect and manipulate individual anyons within the bulk. Here, we propose and theoretically investigate a first step toward this goal by demonstrating that a long-lived, optically generated interlayer exciton can bind to a quasihole in a fractional quantum Hall state, forming a composite excitation we term an anyon-trion. Using exact diagonalization, we show that mobile anyon-trions possess a binding energy of approximately 0.5 meV, whereas static anyon-trions exhibit a binding energy of about 0.9 meV, that is linearly proportional to the quasiholes fractional charge. An experimental realization based on photoluminescence from localized interlayer excitons in a quantum twisting microscope setup should allow for a direct optical observation of anyon-trions.
Related papers
- The role of spectator modes in the quantum-logic spectroscopy of single trapped molecular ions [41.94295877935867]
We study the role of spectator modes not directly involved in a measurement protocol relying on a state-dependent optical-dipole force.<n>We identify a Debye-Waller-type effect that modifies the response of the two-ion string to the force and show that cooling all normal modes of the string allows for the detection of the rovibrational ground state of a N$+$ molecular ion.
arXiv Detail & Related papers (2025-04-03T14:37:24Z) - Signatures of collective photon emission and ferroelectric ordering of excitons near their Mott insulating state in a WSe$_2$/WS$_2$ heterobilayer [5.513261477879772]
We present evidence for an in-plane ferroelectric phase of dipolar moir'e excitons driven by strong exciton-exciton interactions.<n>We discover a surprising speed-up of photon emission at late times and low densities in excitonic decay.<n>Our findings provide first evidence for strong dipolar inter-site interactions in moir'e lattices, demonstrate collective photon emission as a probe for moir'e quantum materials.
arXiv Detail & Related papers (2025-02-26T19:00:09Z) - A New Bite Into Dark Matter with the SNSPD-Based QROCODILE Experiment [55.46105000075592]
We present the first results from the Quantum Resolution-d Cryogenic Observatory for Dark matter Incident at Low Energy (QROCODILE)<n>The QROCODILE experiment uses a microwire-based superconducting nanowire single-photon detector (SNSPD) as a target and sensor for dark matter scattering and absorption.<n>We report new world-leading constraints on the interactions of sub-MeV dark matter particles with masses as low as 30 keV.
arXiv Detail & Related papers (2024-12-20T19:00:00Z) - Measurement-Induced Transmon Ionization [69.65384453064829]
We develop a comprehensive framework which provides a physical picture of the origin of transmon ionization.
This framework identifies the multiphoton resonances responsible for transmon ionization.
It also allows one to efficiently compute numerical estimates of the photon number threshold for ionization.
arXiv Detail & Related papers (2024-02-09T18:46:50Z) - Engineering the impact of phonon dephasing on the coherence of a WSe$_{2}$ single-photon source via cavity quantum electrodynamics [36.88715167286119]
Emitter dephasing is one of the key issues in the performance of solid-state single photon sources.
We show that it is possible to tune and engineer the coherence of photons emitted from a single WSe$$ monolayer dot via selectively coupling it to a spectral cavity resonance.
arXiv Detail & Related papers (2023-07-13T16:41:06Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Dynamics of moire trion and its valley polarization in microfabricated
WSe2/MoSe2 heterobilayer [0.36944296923226316]
We propose a microfabrication technique based on focused Ga+ ion beams, which enables us to control the number of peaks originating from the moire potential.
By taking advantage of this approach, we reveal emissions from a single moire exciton and charged moire exciton (trion) under electrostatic doping conditions.
arXiv Detail & Related papers (2023-01-26T10:02:37Z) - An accordion superlattice for controlling atom separation in optical
potentials [0.0]
We propose a method for separating trapped atoms in optical lattices by large distances.
By coherently loading atoms between the two superimposed potentials, we can reach, in principle, arbitrarily large atom separations.
The method can be applied to neutral-atom quantum computing with optical tweezers, as well as quantum simulation of low-entropy many-body states.
arXiv Detail & Related papers (2023-01-10T19:00:00Z) - Quantum theory of light interaction with a Lorenz-Mie particle: Optical
detection and three-dimensional ground-state cooling [0.0]
Hamiltonian describes fundamental coupling between photons and center-of-mass phonons, including Stokes and anti-Stokes processes.
We show how to evaluate laser recoil rates and the information radiation patterns in the presence of a focused laser beam.
arXiv Detail & Related papers (2022-12-09T13:11:29Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Heralded spectroscopy reveals exciton-exciton correlations in single
colloidal quantum dots [0.8911822441893501]
We introduce biexciton heralded spectroscopy, enabled by a single-photon avalanche diode array based spectrometer.
This allows us to directly observe biexciton-exciton emission cascades and measure the biexciton binding energy of single quantum dots at room temperature.
We uncover correlations hitherto masked in ensembles, of the biexciton binding energy with both charge-carrier confinement and fluctuations of the local electrostatic potential.
arXiv Detail & Related papers (2021-08-01T00:41:57Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.