論文の概要: OrQstrator: An AI-Powered Framework for Advanced Quantum Circuit Optimization
- arxiv url: http://arxiv.org/abs/2507.09682v1
- Date: Sun, 13 Jul 2025 15:38:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:23.756615
- Title: OrQstrator: An AI-Powered Framework for Advanced Quantum Circuit Optimization
- Title(参考訳): OrQstrator: 高度な量子回路最適化のためのAI駆動フレームワーク
- Authors: Laura Baird, Armin Moin,
- Abstract要約: OrQstratorは、ノイズ中間スケール量子(NISQ)時代に量子回路最適化を行うためのモジュラーフレームワークである。
私たちのフレームワークは、Deep Reinforcement Learning (DRL)を利用している。
- 参考スコア(独自算出の注目度): 3.9134031118910264
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a novel approach, OrQstrator, which is a modular framework for conducting quantum circuit optimization in the Noisy Intermediate-Scale Quantum (NISQ) era. Our framework is powered by Deep Reinforcement Learning (DRL). Our orchestration engine intelligently selects among three complementary circuit optimizers: A DRL-based circuit rewriter trained to reduce depth and gate count via learned rewrite sequences; a domain-specific optimizer that performs efficient local gate resynthesis and numeric optimization; a parameterized circuit instantiator that improves compilation by optimizing template circuits during gate set translation. These modules are coordinated by a central orchestration engine that learns coordination policies based on circuit structure, hardware constraints, and backend-aware performance features such as gate count, depth, and expected fidelity. The system outputs an optimized circuit for hardware-aware transpilation and execution, leveraging techniques from an existing state-of-the-art approach, called the NISQ Analyzer, to adapt to backend constraints.
- Abstract(参考訳): 我々は、ノイズ中間スケール量子(NISQ)時代に量子回路最適化を行うためのモジュラーフレームワークであるOrQstratorを提案する。
私たちのフレームワークは、Deep Reinforcement Learning (DRL)を活用しています。
我々のオーケストレーションエンジンは、3つの補完回路オプティマイザをインテリジェントに選択する:DRLベースの回路リライターは、学習された書き直しシーケンスによって深さとゲート数を減らし、効率的な局所ゲート再合成と数値最適化を行うドメイン固有のオプティマイザ、ゲートセット変換中のテンプレート回路を最適化してコンパイルを改善するパラメータ化回路インスタンスである。
これらのモジュールは中央オーケストレーションエンジンによって調整され、回路構造、ハードウェア制約、ゲート数、深さ、予測忠実度といったバックエンド対応のパフォーマンス機能に基づいて調整ポリシーを学習する。
このシステムは、NISQ Analyzerと呼ばれる既存の最先端アプローチの技術を活用して、バックエンドの制約に適応する、ハードウェア対応のトランスパイレーションと実行のための最適化回路を出力する。
関連論文リスト
- Optimizing Quantum Circuits via ZX Diagrams using Reinforcement Learning and Graph Neural Networks [38.499527873574436]
量子回路最適化のためのZX計算,グラフニューラルネットワーク,強化学習に基づくフレームワークを提案する。
本手法は,強化学習と木探索を組み合わせることで,ZX計算の書き直し規則を最適に選択することの課題に対処する。
本稿では,多種多様なランダム回路上での最先端回路の一般化と能力について述べる。
論文 参考訳(メタデータ) (2025-04-04T13:19:08Z) - Coqa: Blazing Fast Compiler Optimizations for QAOA [3.165516590671437]
我々は,異なる種類の量子ハードウェアに適したQAOA回路のコンパイルを最適化するために,Coqaを提案する。
平均的なゲート数の30%削減と,ベンチマーク全体のコンパイル時間の39倍の高速化を実現しています。
論文 参考訳(メタデータ) (2024-08-15T18:12:04Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Reinforcement Learning Based Quantum Circuit Optimization via ZX-Calculus [0.0]
本稿では,ZX-ダイアグラムのグラフ理論的単純化規則を用いて,量子回路を最適化するための新しい強化学習法を提案する。
そこで本研究では,ZX-Calculusをベースとした最良性能のアルゴリズムと比較し,提案手法の能力を示す。
論文 参考訳(メタデータ) (2023-12-18T17:59:43Z) - Efficient DCQO Algorithm within the Impulse Regime for Portfolio
Optimization [41.94295877935867]
本稿では,デジタルカウンセバティック量子最適化(DCQO)パラダイムを用いて,ポートフォリオ最適化のための高速なディジタル量子アルゴリズムを提案する。
提案手法は,アルゴリズムの回路深度要件を特に低減し,解の精度を向上し,現在の量子プロセッサに適している。
我々は,IonQトラップイオン量子コンピュータ上で最大20量子ビットを使用するプロトコルの利点を実験的に実証した。
論文 参考訳(メタデータ) (2023-08-29T17:53:08Z) - Compiling Quantum Circuits for Dynamically Field-Programmable Neutral Atoms Array Processors [5.012570785656963]
動的にフィールドプログラマブルな量子ビットアレイ(DPQA)が量子情報処理のための有望なプラットフォームとして登場した。
本稿では,複数の配列を含むDPQAアーキテクチャについて考察する。
DPQAをベースとしたコンパイル回路では,グリッド固定アーキテクチャに比べてスケーリングオーバヘッドが小さくなることを示す。
論文 参考訳(メタデータ) (2023-06-06T08:13:10Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Robust resource-efficient quantum variational ansatz through
evolutionary algorithm [0.46180371154032895]
Vari Quantum Algorithm (VQAsational) は、短期デバイスにおける量子優位性を実証するための有望な手法である。
我々は、広く使われているハードウェア効率の良いアンサッツのような固定VQA回路設計は、必ずしも不完全性に対して堅牢ではないことを示す。
本稿では,ゲノム長調整可能な進化アルゴリズムを提案し,回路アンサッツおよびゲートパラメータの変動に最適化されたロバストなVQA回路を設計する。
論文 参考訳(メタデータ) (2022-02-28T12:14:11Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Extending XACC for Quantum Optimal Control [70.19683407682642]
量子コンピューティングベンダーは、直接パルスレベルの量子制御のためのアプリケーションプログラミングをオープンにし始めている。
本稿では,XACCシステムレベルの量子古典ソフトウェアフレームワークの拡張について述べる。
この拡張により、デジタル量子回路表現を等価なパルスシーケンスに変換することができる。
論文 参考訳(メタデータ) (2020-06-04T13:13:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。