論文の概要: DALI-PD: Diffusion-based Synthetic Layout Heatmap Generation for ML in Physical Design
- arxiv url: http://arxiv.org/abs/2507.10606v1
- Date: Sun, 13 Jul 2025 06:12:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:02.771927
- Title: DALI-PD: Diffusion-based Synthetic Layout Heatmap Generation for ML in Physical Design
- Title(参考訳): DALI-PD:物理設計におけるMLのための拡散型合成レイアウトヒートマップ生成
- Authors: Bing-Yue Wu, Vidya A. Chhabria,
- Abstract要約: DALI-PDは、合成レイアウトのヒートマップを数秒で生成するフレームワークである。
ヒートマップには、電力、IRドロップ、混雑、マクロ配置、細胞密度マップが含まれる。
これらのヒートマップは実際のレイアウトによく似ており、IRドロップや混雑予測などの下流MLタスクのML精度を改善している。
- 参考スコア(独自算出の注目度): 0.3946288852327086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) has demonstrated significant promise in various physical design (PD) tasks. However, model generalizability remains limited by the availability of high-quality, large-scale training datasets. Creating such datasets is often computationally expensive and constrained by IP. While very few public datasets are available, they are typically static, slow to generate, and require frequent updates. To address these limitations, we present DALI-PD, a scalable framework for generating synthetic layout heatmaps to accelerate ML in PD research. DALI-PD uses a diffusion model to generate diverse layout heatmaps via fast inference in seconds. The heatmaps include power, IR drop, congestion, macro placement, and cell density maps. Using DALI-PD, we created a dataset comprising over 20,000 layout configurations with varying macro counts and placements. These heatmaps closely resemble real layouts and improve ML accuracy on downstream ML tasks such as IR drop or congestion prediction.
- Abstract(参考訳): 機械学習(ML)は様々な物理設計(PD)タスクにおいて大きな可能性を証明している。
しかし、モデル一般化性は、高品質で大規模なトレーニングデータセットが利用可能であることによって制限され続けている。
このようなデータセットの作成は、しばしば計算コストが高く、IPによって制約される。
公開データセットはほとんどないが、通常は静的で、生成が遅く、頻繁な更新を必要とする。
これらの制約に対処するため,DALI-PDを提案する。DALI-PDは,PD研究においてMLを高速化するために,合成レイアウトのヒートマップを生成するスケーラブルなフレームワークである。
DALI-PDは拡散モデルを用いて高速な推論によって様々なレイアウトのヒートマップを生成する。
ヒートマップには、パワー、IRドロップ、混雑、マクロ配置、細胞密度マップが含まれる。
DALI-PDを用いて、マクロ数や配置の異なる2万以上のレイアウト構成からなるデータセットを作成しました。
これらのヒートマップは実際のレイアウトによく似ており、IRドロップや混雑予測などの下流MLタスクのML精度を改善している。
関連論文リスト
- MultiPDENet: PDE-embedded Learning with Multi-time-stepping for Accelerated Flow Simulation [48.41289705783405]
マルチスケールタイムステップ(MultiPDENet)を用いたPDE組み込みネットワークを提案する。
特に,有限差分構造に基づく畳み込みフィルタを少数のパラメータで設計し,最適化する。
4階ランゲ・クッタ積分器を微細な時間スケールで備えた物理ブロックが確立され、PDEの構造を埋め込んで予測を導出する。
論文 参考訳(メタデータ) (2025-01-27T12:15:51Z) - POMONAG: Pareto-Optimal Many-Objective Neural Architecture Generator [4.09225917049674]
Transferable NASが登場し、データセット依存からタスク依存への探索プロセスを一般化した。
本稿では多目的拡散プロセスを通じて拡散NAGを拡張するPOMONAGを紹介する。
結果は、NAS201とMobileNetV3の2つの検索スペースで検証され、15の画像分類データセットで評価された。
論文 参考訳(メタデータ) (2024-09-30T16:05:29Z) - EM-GANSim: Real-time and Accurate EM Simulation Using Conditional GANs for 3D Indoor Scenes [55.2480439325792]
実時間電磁伝搬のための新しい機械学習手法(EM-GANSim)を提案する。
実際には、3D屋内環境のあらゆる場所で数ミリ秒で信号強度を計算することができる。
論文 参考訳(メタデータ) (2024-05-27T17:19:02Z) - Reduced-order modeling of unsteady fluid flow using neural network ensembles [0.0]
本稿では,一般的なアンサンブル学習手法であるバッグングを用いて,完全なデータ駆動型リダクションモデルフレームワークを開発することを提案する。
このフレームワークはCAEを用いて全階モデルとLSTMアンサンブルの空間的再構成を行い、時系列予測を行う。
その結果,提案フレームワークはエラーの伝播を効果的に低減し,未確認点における潜伏変数の時系列予測をより正確に行うことができることがわかった。
論文 参考訳(メタデータ) (2024-02-08T03:02:59Z) - Diffusion-based Data Augmentation for Object Counting Problems [62.63346162144445]
拡散モデルを用いて広範なトレーニングデータを生成するパイプラインを開発する。
拡散モデルを用いて位置ドットマップ上に条件付き画像を生成するのはこれが初めてである。
提案した拡散モデルにおけるカウント損失は,位置ドットマップと生成した群集画像との差を効果的に最小化する。
論文 参考訳(メタデータ) (2024-01-25T07:28:22Z) - DOMINO: Domain-invariant Hyperdimensional Classification for
Multi-Sensor Time Series Data [14.434647668734184]
ノイズの多いマルチセンサ時系列データにおける分散シフト問題に対処する新しいHDC学習フレームワークであるDOMINOを提案する。
DOMINOは最先端(SOTA)DNNベースのドメイン一般化技術よりも平均2.04%高い精度で達成し、16.34倍高速なトレーニングと2.89倍高速な推論を提供する。
論文 参考訳(メタデータ) (2023-08-07T04:44:12Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
我々は、CMMN(Convolutional Monge Mapping Normalization)と呼ばれる新しい手法を提案する。
CMMNは、そのパワースペクトル密度(PSD)をトレーニングデータに基づいて推定されるワッサーシュタインバリセンタに適応させるために、信号をフィルタリングする。
睡眠脳波データに関する数値実験により、CMMNはニューラルネットワークアーキテクチャから独立して、顕著で一貫したパフォーマンス向上をもたらすことが示された。
論文 参考訳(メタデータ) (2023-05-30T08:24:01Z) - Temporal Subsampling Diminishes Small Spatial Scales in Recurrent Neural
Network Emulators of Geophysical Turbulence [0.0]
しばしば見過ごされる処理ステップがエミュレータの予測品質にどのように影響するかを検討する。
1)空間ベクトル自己回帰(NVAR)の形式、(2)エコー状態ネットワーク(ESN)の形式。
いずれの場合も、トレーニングデータのサブサンプリングは、数値拡散に類似した小さなスケールでのバイアスの増加につながる。
論文 参考訳(メタデータ) (2023-04-28T21:34:53Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
フェデレートラーニング(Federated Learning, FedL)は、一連の無線デバイスにモデルトレーニングを配布する一般的なテクニックとして登場した。
我々は,FedLアーキテクチャを3次元に拡張した並列逐次学習(PSL)を開発した。
我々の分析は、分散機械学習におけるコールド対ウォームアップモデルの概念とモデル慣性について光を当てている。
論文 参考訳(メタデータ) (2022-02-07T05:11:01Z) - Conditional Generation of Synthetic Geospatial Images from Pixel-level
and Feature-level Inputs [0.0]
画素レベル条件 (PLC) と特徴レベル条件 (FLC) を同時に条件付きで合成する条件生成モデル VAE-Info-cGAN を提案する。
提案モデルでは,道路網の時間的表現のみを条件に,異なる地理的位置をまたいだ様々な形態のマクロアグリゲーションを高精度に生成することができる。
論文 参考訳(メタデータ) (2021-09-11T06:58:19Z) - Diffusion Earth Mover's Distance and Distribution Embeddings [61.49248071384122]
拡散は$tildeo(n)$ timeで計算でき、ツリーベースのような同様の高速アルゴリズムよりも正確である。
拡散は完全微分可能であり、深層ニューラルネットワークのような勾配拡散フレームワークの将来の使用に適している。
論文 参考訳(メタデータ) (2021-02-25T13:18:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。