論文の概要: Scalable Unsupervised Segmentation via Random Fourier Feature-based Gaussian Process
- arxiv url: http://arxiv.org/abs/2507.10632v1
- Date: Mon, 14 Jul 2025 08:41:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:02.797812
- Title: Scalable Unsupervised Segmentation via Random Fourier Feature-based Gaussian Process
- Title(参考訳): ランダムフーリエ特徴量に基づくガウス過程によるスケーラブルな教師なしセグメンテーション
- Authors: Issei Saito, Masatoshi Nagano, Tomoaki Nakamura, Daichi Mochihashi, Koki Mimura,
- Abstract要約: ガウス過程隠蔽セミマルコフモデル(GP-HSMM)の高計算コストに対応するためにRFF-GP-HSMMを提案する。
GP-HSMMはガウス過程を用いて時系列データをモデル化し、トレーニング中にN倍のN核行列の反転を必要とする。
提案手法は, ガウス過程とRFFを用いた線形回帰を近似し, 表現力を維持しつつ, カーネル行列の逆転を不要とした。
- 参考スコア(独自算出の注目度): 3.8214695776749013
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose RFF-GP-HSMM, a fast unsupervised time-series segmentation method that incorporates random Fourier features (RFF) to address the high computational cost of the Gaussian process hidden semi-Markov model (GP-HSMM). GP-HSMM models time-series data using Gaussian processes, requiring inversion of an N times N kernel matrix during training, where N is the number of data points. As the scale of the data increases, matrix inversion incurs a significant computational cost. To address this, the proposed method approximates the Gaussian process with linear regression using RFF, preserving expressive power while eliminating the need for inversion of the kernel matrix. Experiments on the Carnegie Mellon University (CMU) motion-capture dataset demonstrate that the proposed method achieves segmentation performance comparable to that of conventional methods, with approximately 278 times faster segmentation on time-series data comprising 39,200 frames.
- Abstract(参考訳): 本稿では,ガウス過程隠蔽セミマルコフモデル(GP-HSMM)の高計算コストに対応するために,ランダムフーリエ特徴(RFF)を組み込んだ高速非教師付き時系列分割法であるRFF-GP-HSMMを提案する。
GP-HSMMはガウス過程を用いて時系列データをモデル化し、トレーニング中にN倍のN核行列の反転を必要とする。
データの規模が大きくなるにつれて、行列の逆転は計算コストを大幅に高める。
これを解決するため,提案手法はRFFを用いてガウス過程と線形回帰を近似し,表現力を保ちながら,カーネル行列の逆転を不要とした。
カーネギーメロン大学(CMU)のモーションキャプチャーデータセットを用いた実験により,39,200フレームからなる時系列データの約278倍の精度で,従来の手法に匹敵するセグメンテーション性能が得られた。
関連論文リスト
- Gaussian Processes Sampling with Sparse Grids under Additive Schwarz Preconditioner [6.408773096179187]
本稿では,GPモデルの前と後をランダムに実現するためのスケーラブルなアルゴリズムを提案する。
提案アルゴリズムはスパースグリッドを用いた点近似と加法的シュワルツプレコンディショナーを利用する。
論文 参考訳(メタデータ) (2024-08-01T00:19:36Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
本稿では,ガウス混合に基づく複合バッチ正規化法を提案する。
機能空間をより包括的にモデル化し、ヘッドクラスの優位性を減らすことができる。
提案手法は,画像分類における既存の手法よりも優れている。
論文 参考訳(メタデータ) (2022-12-02T07:31:39Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
本稿では,ニューラルネットワークガウス過程(NNGP)カーネルのランダム特徴近似(RFA)を用いた新しいアルゴリズムを提案する。
我々のアルゴリズムは、KIP上で少なくとも100倍のスピードアップを提供し、1つのGPUで実行できる。
RFA蒸留 (RFAD) と呼ばれる本手法は, 大規模データセットの精度において, KIP や他のデータセット凝縮アルゴリズムと競合して動作する。
論文 参考訳(メタデータ) (2022-10-21T15:56:13Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
乱変数ベクトルの各成分上で動作し,パラメータを全て共有する可逆なODEベースのマッピングを提案する。
NGGPは、様々なベンチマークとアプリケーションに対する競合する最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-10-26T10:45:25Z) - Nesterov Accelerated ADMM for Fast Diffeomorphic Image Registration [63.15453821022452]
ディープラーニングに基づくアプローチの最近の発展は、DiffIRのサブ秒間実行を実現している。
本稿では,中間定常速度場を機能的に構成する簡易な反復スキームを提案する。
次に、任意の順序の正規化項を用いて、これらの速度場に滑らかさを課す凸最適化モデルを提案する。
論文 参考訳(メタデータ) (2021-09-26T19:56:45Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - SigGPDE: Scaling Sparse Gaussian Processes on Sequential Data [16.463077353773603]
SigGPDEは,ガウス過程(GP)を逐次データに基づいて拡張可能な分散変動推論フレームワークである。
GPシグネチャカーネルの勾配は双曲偏微分方程式(PDE)の解であることを示す。
この理論的な洞察により、ELBOを最適化する効率的なバックプロパゲーションアルゴリズムを構築することができる。
論文 参考訳(メタデータ) (2021-05-10T09:10:17Z) - Sparse Algorithms for Markovian Gaussian Processes [18.999495374836584]
スパースマルコフ過程は、誘導変数の使用と効率的なカルマンフィルタライク再帰を結合する。
我々は,局所ガウス項を用いて非ガウス的確率を近似する一般的なサイトベースアプローチであるsitesを導出する。
提案手法は,変動推論,期待伝播,古典非線形カルマンスムーサなど,機械学習と信号処理の両方から得られるアルゴリズムの新たなスパース拡張の一群を導出する。
派生した方法は、モデルが時間と空間の両方で別々の誘導点を持つ文学時間データに適しています。
論文 参考訳(メタデータ) (2021-03-19T09:50:53Z) - Faster Kernel Interpolation for Gaussian Processes [30.04235162264955]
大規模データセットへのプロセス(GP)回帰のスケーリングにおける重要な課題は、正確な推論がnxnのカーネル行列を必要とすることである。
構造化カーネル(SKI)は最もスケーラブルな方法の一つである。
1つのO(n)時間前計算ステップの後、SKIをO(m log m)に還元できることが示される。
我々は, m と n の広い範囲で実際に高速化を実演し, 1億点を超える3次元気象レーダデータセット上でGP推定に適用した。
論文 参考訳(メタデータ) (2021-01-28T00:09:22Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
局所ガウス過程は、ガウス過程の回帰に基づく新しい、計算効率の良いモデリング手法である。
入力空間の反復的データ駆動分割により、実際にはトレーニングポイントの総数において、サブ線形計算複雑性が達成される。
実世界のデータセットに対する数値的な評価は、予測と更新の速度だけでなく、精度の点で他の最先端手法よりも有利であることを示している。
論文 参考訳(メタデータ) (2020-06-16T18:43:31Z) - Scalable Hybrid HMM with Gaussian Process Emission for Sequential
Time-series Data Clustering [13.845932997326571]
隠れマルコフモデル(HMM)とガウス過程(GP)のエミッションを組み合わせることで、隠れた状態を効率的に推定することができる。
本稿では,HMM-GPSMのためのスケーラブルな学習法を提案する。
論文 参考訳(メタデータ) (2020-01-07T07:28:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。