論文の概要: Kernel Learning for Mean-Variance Trading Strategies
- arxiv url: http://arxiv.org/abs/2507.10701v1
- Date: Mon, 14 Jul 2025 18:17:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:02.829894
- Title: Kernel Learning for Mean-Variance Trading Strategies
- Title(参考訳): 平均変動トレーディング戦略のためのカーネル学習
- Authors: Owen Futter, Nicola Muca Cirone, Blanka Horvath,
- Abstract要約: 動的パス依存型トレーディング戦略を構築するためのカーネルベースのフレームワークを開発する。
我々は、再生されたカーネルヒルベルト空間の関数としてトレーディング戦略をパラメータ化する。
我々のフレームワークはクローズドフォームのソリューションを保持しており、勾配に基づく最適化に代わる手段を提供する。
- 参考スコア(独自算出の注目度): 0.5461938536945723
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this article, we develop a kernel-based framework for constructing dynamic, pathdependent trading strategies under a mean-variance optimisation criterion. Building on the theoretical results of (Muca Cirone and Salvi, 2025), we parameterise trading strategies as functions in a reproducing kernel Hilbert space (RKHS), enabling a flexible and non-Markovian approach to optimal portfolio problems. We compare this with the signature-based framework of (Futter, Horvath, Wiese, 2023) and demonstrate that both significantly outperform classical Markovian methods when the asset dynamics or predictive signals exhibit temporal dependencies for both synthetic and market-data examples. Using kernels in this context provides significant modelling flexibility, as the choice of feature embedding can range from randomised signatures to the final layers of neural network architectures. Crucially, our framework retains closed-form solutions and provides an alternative to gradient-based optimisation.
- Abstract(参考訳): 本稿では、平均分散最適化基準の下で、動的で経路依存的な取引戦略を構築するためのカーネルベースのフレームワークを開発する。
2025年、Muca Cirone と Salvi の理論的結果に基づいて、我々はトレーディング戦略を再生カーネルヒルベルト空間(RKHS)の関数としてパラメータ化し、最適ポートフォリオ問題に対するフレキシブルで非マルコフ的アプローチを可能にする。
これを (Futter, Horvath, Wiese, 2023) のシグネチャベースのフレームワークと比較し, 資産動態や予測信号が合成データと市場データの両方に時間的依存を示す場合, 古典マルコフ法を著しく上回ることを示した。
このコンテキストでカーネルを使用することで、機能埋め込みの選択は、ランダム化されたシグネチャからニューラルネットワークアーキテクチャの最終レイヤまで、大きなモデリング柔軟性を提供する。
重要なことは、我々のフレームワークはクローズドフォームのソリューションを保持し、勾配ベースの最適化に代わる手段を提供する。
関連論文リスト
- Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing [58.52119063742121]
独自の予測と潜在的にノイズの多いラベルを使ってモデルをトレーニングすることは、モデルパフォーマンスを改善するためのよく知られた戦略である。
本稿では,モデルの予測と提供ラベルを最適に組み合わせる方法について論じる。
我々の主な貢献は、現在のモデルの予測と与えられたラベルを組み合わせたベイズ最適集約関数の導出である。
論文 参考訳(メタデータ) (2025-05-21T07:16:44Z) - Tuning for Trustworthiness -- Balancing Performance and Explanation Consistency in Neural Network Optimization [49.567092222782435]
我々は,異なる特徴帰属法間の合意として定義された,XAI整合性という新しい概念を紹介する。
予測性能と説明のバランスをとる多目的最適化フレームワークを構築した。
本研究は、トレードオフゾーンバランス性能損失とXAI整合性による強靭性向上のモデルについて、今後の研究基盤を提供する。
論文 参考訳(メタデータ) (2025-05-12T13:19:14Z) - Rough kernel hedging [4.272515397452792]
本稿では,高次元の経路依存型ヘッジ問題に対して,拡張性,証明可能な収束型シグネチャベースアルゴリズムを提案する。
市場ダイナミクスに関する最小限の仮定を、一般の幾何学的粗な経路としてモデル化し、完全なモデルなしのアプローチをもたらす。
論文 参考訳(メタデータ) (2025-01-16T17:34:49Z) - PRANCE: Joint Token-Optimization and Structural Channel-Pruning for Adaptive ViT Inference [44.77064952091458]
PRANCEはVision Transformer圧縮フレームワークで、アクティベートされたチャネルを共同で最適化し、入力の特性に基づいてトークンを削減する。
本稿では,ViTの推論過程を逐次決定プロセスとしてモデル化する,新しい「結果と結果」学習機構を提案する。
我々のフレームワークは、プルーニング、マージング、プルーニングマージングといった様々なトークン最適化手法と互換性があることが示されている。
論文 参考訳(メタデータ) (2024-07-06T09:04:27Z) - CoinSeg: Contrast Inter- and Intra- Class Representations for
Incremental Segmentation [85.13209973293229]
クラスインクリメンタルセマンティックセグメンテーションは、モデルの安定性と可塑性のバランスをとることを目的としている。
インクリメンタル(CoinSeg)のためのコントラスト間およびクラス内表現を提案する。
論文 参考訳(メタデータ) (2023-10-10T07:08:49Z) - Attitudes and Latent Class Choice Models using Machine learning [0.0]
LCCM (Latent Class Choice Models) の仕様において, 位置インジケータを効率的に組み込む手法を提案する。
この定式化は、位置指標と決定選択との関係を探索する能力において構造方程式を克服する。
我々は,デンマークのコペンハーゲンから,カーシェアリング(Car-Sharing, CS)サービスサブスクリプションの選択を推定するためのフレームワークをテストした。
論文 参考訳(メタデータ) (2023-02-20T10:03:01Z) - Revisiting GANs by Best-Response Constraint: Perspective, Methodology,
and Application [49.66088514485446]
ベストレスポンス制約(Best-Response Constraint、BRC)は、ジェネレータのディスクリミネータへの依存性を明示的に定式化する一般的な学習フレームワークである。
モチベーションや定式化の相違があっても, フレキシブルBRC法により, 様々なGANが一様に改善できることが示される。
論文 参考訳(メタデータ) (2022-05-20T12:42:41Z) - Planning with Diffusion for Flexible Behavior Synthesis [125.24438991142573]
我々は、できるだけ多くの軌道最適化パイプラインをモデリング問題に折り畳むことがどう見えるか検討する。
我々の技術的アプローチの核心は、軌道を反復的にデノベーションすることで計画する拡散確率モデルにある。
論文 参考訳(メタデータ) (2022-05-20T07:02:03Z) - Neural Structured Prediction for Inductive Node Classification [29.908759584092167]
本稿では,ラベル付き学習グラフのモデルを学習し,未ラベルの試験グラフ上でノードラベルを推論するために一般化することを目的とした,帰納的環境におけるノード分類について検討する。
本稿では,両者の利点を組み合わせたSPN(Structured Proxy Network)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-04-15T15:50:27Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
本稿では,GDC(Generative, Discriminative, and Corrective)の原則を集約する,最適化に着想を得た統合学習フレームワークを提案する。
フレキシブルな組み合わせで最適化モデルを効果的に解くために,3つのプロパゲーティブモジュールを構築した。
低レベル視覚タスクにおける実験は、GDCの有効性と適応性を検証する。
論文 参考訳(メタデータ) (2020-12-10T03:24:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。