論文の概要: Women Sport Actions Dataset for Visual Classification Using Small Scale Training Data
- arxiv url: http://arxiv.org/abs/2507.10969v1
- Date: Tue, 15 Jul 2025 04:18:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:02.975477
- Title: Women Sport Actions Dataset for Visual Classification Using Small Scale Training Data
- Title(参考訳): 小型トレーニングデータを用いた視覚分類のための女子スポーツ行動データセット
- Authors: Palash Ray, Mahuya Sasmal, Asish Bera,
- Abstract要約: 本研究では,女子スポーツ分類のための小型トレーニングデータを用いたWomenSportsという新しいデータセットを提案する。
提案アルゴリズムを一般化するための3つの異なるスポーツデータセットと1つのダンスデータセットを用いて実験を行った。
ディープラーニング手法は,提案したWomenSportsデータセット上でResNet-50を用いて89.15%のトップ1分類精度を実現する。
- 参考スコア(独自算出の注目度): 3.850666668546735
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sports action classification representing complex body postures and player-object interactions is an emerging area in image-based sports analysis. Some works have contributed to automated sports action recognition using machine learning techniques over the past decades. However, sufficient image datasets representing women sports actions with enough intra- and inter-class variations are not available to the researchers. To overcome this limitation, this work presents a new dataset named WomenSports for women sports classification using small-scale training data. This dataset includes a variety of sports activities, covering wide variations in movements, environments, and interactions among players. In addition, this study proposes a convolutional neural network (CNN) for deep feature extraction. A channel attention scheme upon local contextual regions is applied to refine and enhance feature representation. The experiments are carried out on three different sports datasets and one dance dataset for generalizing the proposed algorithm, and the performances on these datasets are noteworthy. The deep learning method achieves 89.15% top-1 classification accuracy using ResNet-50 on the proposed WomenSports dataset, which is publicly available for research at Mendeley Data.
- Abstract(参考訳): 複雑な身体姿勢とプレーヤ・オブジェクト間の相互作用を表すスポーツ行動分類は、画像に基づくスポーツ分析において新たな分野である。
いくつかの研究は、過去数十年にわたって機械学習技術を用いた自動スポーツ行動認識に寄与してきた。
しかし、女性スポーツ行動を表す十分な画像データセットは、研究者には利用できない。
この制限を克服するため、小規模のトレーニングデータを用いて、女性スポーツ分類のためのWomenSportsという新しいデータセットを提示する。
このデータセットにはさまざまなスポーツ活動が含まれており、プレイヤー間の動き、環境、相互作用の幅広いバリエーションをカバーしている。
さらに,深部特徴抽出のための畳み込みニューラルネットワーク(CNN)を提案する。
局所的文脈領域に対するチャネルアテンションスキームを適用して特徴表現を洗練・拡張する。
実験は,提案アルゴリズムを一般化するための3つの異なるスポーツデータセットと1つのダンスデータセットを用いて実施され,これらのデータセットの性能は注目に値する。
このディープラーニング手法は、提案したWomenSportsデータセット上でResNet-50を用いて89.15%のトップ1分類精度を達成する。
関連論文リスト
- Deep learning for action spotting in association football videos [64.10841325879996]
SoccerNetイニシアチブは毎年の課題を組織し、世界中の参加者が最先端のパフォーマンスを達成するために競う。
本稿では,スポーツにおけるアクションスポッティングの歴史を,2018年の課題の創出から,現在の研究・スポーツ産業における役割まで遡る。
論文 参考訳(メタデータ) (2024-10-02T07:56:15Z) - Benchmarking Badminton Action Recognition with a New Fine-Grained Dataset [16.407837909069073]
高品質なバドミントン映像から得られたビデオバドミントンデータセットを紹介する。
VideoBadmintonの導入は、バドミントンアクション認識だけでなく、きめ細かいアクションを認識するためのデータセットも提供する。
論文 参考訳(メタデータ) (2024-03-19T02:52:06Z) - Towards Active Learning for Action Spotting in Association Football
Videos [59.84375958757395]
フットボールビデオの分析は困難であり、微妙で多様な時間的パターンを特定する必要がある。
現在のアルゴリズムは、限られた注釈付きデータから学ぶ際に大きな課題に直面している。
次にアノテートすべき最も情報に富んだビデオサンプルを選択する能動的学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-09T11:50:41Z) - Sports Video Analysis on Large-Scale Data [10.24207108909385]
本稿では,スポーツビデオにおける自動機械記述のモデル化について検討する。
スポーツビデオ分析のためのNBAデータセット(NSVA)を提案する。
論文 参考訳(メタデータ) (2022-08-09T16:59:24Z) - Graph Neural Networks to Predict Sports Outcomes [0.0]
スポーツに依存しないグラフによるゲーム状態の表現を導入する。
次に、提案したグラフ表現をグラフニューラルネットワークの入力として使用し、スポーツ結果を予測する。
論文 参考訳(メタデータ) (2022-07-28T14:45:02Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
アクションラベルはソースデータセットでのみ利用可能だが、トレーニング段階のターゲットデータセットでは利用できない。
我々は,2つの骨格に基づく行動データセット間の領域シフトを低減するために,自己スーパービジョン方式を利用する。
時間的セグメントや人体部分のセグメンテーションとパーフォーミングにより、我々は2つの自己教師あり学習分類タスクを設計する。
論文 参考訳(メタデータ) (2022-07-17T07:05:39Z) - A Survey on Video Action Recognition in Sports: Datasets, Methods and
Applications [60.3327085463545]
本稿では,スポーツ分析のための映像行動認識に関する調査を行う。
サッカー、バスケットボール、バレーボール、ホッケー、フィギュアスケート、体操、卓球、ダイビング、バドミントンなど10種以上のスポーツを紹介します。
本研究では,サッカー,バスケットボール,卓球,フィギュアスケート動作認識をサポートするPaddlePaddleを用いたツールボックスを開発した。
論文 参考訳(メタデータ) (2022-06-02T13:19:36Z) - MultiSports: A Multi-Person Video Dataset of Spatio-Temporally Localized
Sports Actions [39.27858380391081]
本論文では、マルチスポーツとして作成された原子時間行動の新しいマルチパーソンデータセットを提示する。
4つのスポーツクラスを選択し、約3200のビデオクリップを収集し、37790のアクションインスタンスに907kバウンディングボックスをアノテートすることで、MultiSports v1.0のデータセットを構築します。
論文 参考訳(メタデータ) (2021-05-16T10:40:30Z) - What Can You Learn from Your Muscles? Learning Visual Representation
from Human Interactions [50.435861435121915]
視覚のみの表現よりも優れた表現を学べるかどうかを調べるために,人間のインタラクションとアテンション・キューを用いている。
実験の結果,我々の「音楽監督型」表現は,視覚のみの最先端手法であるMoCoよりも優れていた。
論文 参考訳(メタデータ) (2020-10-16T17:46:53Z) - Hybrid Dynamic-static Context-aware Attention Network for Action
Assessment in Long Videos [96.45804577283563]
本稿では,長期ビデオにおけるアクションアセスメントのための新しいハイブリットDynAmic-static Context-aware AttenTION NETwork(ACTION-NET)を提案する。
ビデオのダイナミックな情報を学習すると同時に,特定フレームにおける検出した選手の静的姿勢にも焦点をあてる。
2つのストリームの特徴を組み合わせることで、専門家が与えた地道的なスコアによって監督され、最終的なビデオスコアを後退させます。
論文 参考訳(メタデータ) (2020-08-13T15:51:42Z) - Group Activity Detection from Trajectory and Video Data in Soccer [16.134402513773463]
サッカーにおけるグループアクティビティ検出は、ビデオデータまたはプレーヤとボールの軌跡データを用いて行うことができる。
現在のサッカーデータセットでは、活動は時間なしで原子イベントとしてラベル付けされる。
その結果,ほとんどの事象は,時間分解能が0.5秒未満の視力や軌跡に基づくアプローチで検出できることがわかった。
論文 参考訳(メタデータ) (2020-04-21T21:11:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。