Entanglement-efficiency trade-offs in the fusion-based generation of photonic GHZ-like states
- URL: http://arxiv.org/abs/2507.12389v1
- Date: Wed, 16 Jul 2025 16:36:54 GMT
- Title: Entanglement-efficiency trade-offs in the fusion-based generation of photonic GHZ-like states
- Authors: A. A. Melkozerov, M. Yu. Saygin, S. S. Straupe,
- Abstract summary: We present a linear-optical approach for generating and fusing GHZ-like states, which generalize standard GZ states to include variable entanglement degrees.<n>Results offer a promising pathway toward resource-efficient entangled-state generation for scalable quantum computing and communication.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Probabilistic entangling measurements are key operations in linear-optical quantum technologies, enabling the generation and manipulation of high-dimensional quantum states. While prior research has focused predominantly on specific entangled states, notably graph states and Greenberger-Horne-Zeilinger (GHZ) states, broader classes of states with variable entanglement remain underexplored. In this work, we present a linear-optical approach for generating and fusing GHZ-like states, which generalize standard GHZ states to include variable entanglement degrees. We introduce two schemes based on modified fusion gates that allow flexible control over generation efficiency and the entanglement of the output states. These results offer a promising pathway toward resource-efficient entangled-state generation for scalable quantum computing and communication.
Related papers
- Programming optical-lattice Fermi-Hubbard quantum simulators [39.58317527488534]
We develop ground-state preparation algorithms for different fermionic models.<n>In particular, we first design variational, pre-compiled quantum circuits to prepare the ground state of the native Fermi-Hubbard model.<n>We discuss how to approximate the imaginary-time evolution using variational fermionic circuits.
arXiv Detail & Related papers (2025-02-07T16:40:58Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Experimental demonstration of a versatile and scalable scheme for iterative generation of non-Gaussian states of light [0.0]
Non-Gaussian states of light are essential resources for optical continuous-variable quantum computing.
This letter demonstrates a versatile method using a quantum memory cavity to overcome the probabilistic nature of the breeding protocols.
arXiv Detail & Related papers (2024-05-12T18:11:12Z) - Creating and controlling global Greenberger-Horne-Zeilinger entanglement on quantum processors [20.335679096442604]
Greenberger-Horne-Zeilinger (GHZ) states play vital roles in the foundation of quantum physics.
We propose a general strategy for creating, preserving, and manipulating large-scale GHZ entanglement.
arXiv Detail & Related papers (2024-01-16T11:18:09Z) - Robustness of the projected squeezed state protocol [0.0]
Projected squeezed (PS) states are multipartite entangled states generated by unitary spin squeezing.
We simulate the generation of PS states in non-ideal experimental conditions with relevant decoherence channels.
Our findings highlight PS states as useful metrological resources, demonstrating a robustness against environmental effects with increasing qubit number N.
arXiv Detail & Related papers (2023-10-18T13:21:44Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Multi-squeezed state generation and universal bosonic control via a
driven quantum Rabi model [68.8204255655161]
Universal control over a bosonic degree of freedom is key in the quest for quantum-based technologies.
Here we consider a single ancillary two-level system, interacting with the bosonic mode of interest via a driven quantum Rabi model.
We show that it is sufficient to induce the deterministic realization of a large class of Gaussian and non-Gaussian gates, which in turn provide universal bosonic control.
arXiv Detail & Related papers (2022-09-16T14:18:53Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Extracting perfect GHZ states from imperfect weighted graph states via
entanglement concentration [0.0]
Photonic GHZ states serve as the central resource for a number of important applications in quantum information science.
We propose an entanglement concentration protocol that is capable of generating perfect GHZ states.
arXiv Detail & Related papers (2022-03-14T15:52:44Z) - Quantum-Memory-Enhanced Preparation of Nonlocal Graph States [10.086067943202416]
Graph states are an important class of multipartite entangled states.
We show an efficient scheme to prepare graph states with only two atomic excitations in quantum networks.
Our work demonstrates the prospect of efficient generation of multipartite entangled states in large-scale distributed systems.
arXiv Detail & Related papers (2022-02-27T15:42:09Z) - Robust preparation of Wigner-negative states with optimized
SNAP-displacement sequences [41.42601188771239]
We create non-classical states of light in three-dimensional microwave cavities.
These states are useful for quantum computation.
We show that this way of creating non-classical states is robust to fluctuations of the system parameters.
arXiv Detail & Related papers (2021-11-15T18:20:38Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.