論文の概要: IncA-DES: An incremental and adaptive dynamic ensemble selection approach using online K-d tree neighborhood search for data streams with concept drift
- arxiv url: http://arxiv.org/abs/2507.12573v1
- Date: Wed, 16 Jul 2025 18:42:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.246912
- Title: IncA-DES: An incremental and adaptive dynamic ensemble selection approach using online K-d tree neighborhood search for data streams with concept drift
- Title(参考訳): IncA-DES:オンラインK-d木近傍探索を用いたインクリメンタルで適応的な動的アンサンブル選択手法
- Authors: Eduardo V. L. Barboza, Paulo R. Lisboa de Almeida, Alceu de Souza Britto Jr., Robert Sabourin, Rafael M. O. Cruz,
- Abstract要約: IncA-DESは、地元の専門家の育成を促進する訓練戦略を採用している。
オンラインK-dツリーアルゴリズムは、一貫性のないインスタンスを素早く削除することができる。
提案されたフレームワークは、最先端の7つの手法と比較して、最高の平均精度を得た。
- 参考スコア(独自算出の注目度): 6.6364343000413815
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Data streams pose challenges not usually encountered in batch-based ML. One of them is concept drift, which is characterized by the change in data distribution over time. Among many approaches explored in literature, the fusion of classifiers has been showing good results and is getting growing attention. DS methods, due to the ensemble being instance-based, seem to be an efficient choice under drifting scenarios. However, some attention must be paid to adapting such methods for concept drift. The training must be done in order to create local experts, and the commonly used neighborhood-search DS may become prohibitive with the continuous arrival of data. In this work, we propose IncA-DES, which employs a training strategy that promotes the generation of local experts with the assumption that different regions of the feature space become available with time. Additionally, the fusion of a concept drift detector supports the maintenance of information and adaptation to a new concept. An overlap-based classification filter is also employed in order to avoid using the DS method when there is a consensus in the neighborhood, a strategy that we argue every DS method should employ, as it was shown to make them more applicable and quicker. Moreover, aiming to reduce the processing time of the kNN, we propose an Online K-d tree algorithm, which can quickly remove instances without becoming inconsistent and deals with unbalancing concerns that may occur in data streams. Experimental results showed that the proposed framework got the best average accuracy compared to seven state-of-the-art methods considering different levels of label availability and presented the smaller processing time between the most accurate methods. Additionally, the fusion with the Online K-d tree has improved processing time with a negligible loss in accuracy. We have made our framework available in an online repository.
- Abstract(参考訳): データストリームは、バッチベースのMLでは通常発生することのない課題を引き起こす。
その1つはコンセプトドリフトであり、時間の経過とともにデータ分布が変化するのが特徴である。
文献における多くのアプローチの中で、分類器の融合は良い結果を示しており、注目を集めている。
DSメソッドは、アンサンブルがインスタンスベースであるため、ドリフトシナリオ下では効率的な選択であるように思われる。
しかし、そのような手法をコンセプトドリフトに適用するには注意が必要である。
訓練は地元の専門家を育成するために行われなければならず、一般的に使われている近隣調査DSはデータの継続的な到着によって禁止される可能性がある。
本研究では,特徴空間の異なる領域が時間とともに利用できるようになることを前提として,地域専門家の育成を促進する訓練戦略を取り入れたIncA-DESを提案する。
さらに、ドリフト検出器の融合は情報の維持と新しい概念への適応をサポートする。
また,近傍にコンセンサスが存在する場合のDS手法の使用を避けるために,重複型分類フィルタを用いている。
さらに,kNNの処理時間を短縮することを目的としたオンラインK-dツリーアルゴリズムを提案する。
実験の結果,提案手法は,ラベルの可利用性を考慮した7つの最先端手法と比較して,平均精度が最も高く,最も精度の高い手法間の処理時間が少ないことがわかった。
さらに、オンラインK-dツリーとの融合により、処理時間が改善され、精度が低下する。
当社のフレームワークをオンラインリポジトリで利用可能にしました。
関連論文リスト
- SUDS: A Strategy for Unsupervised Drift Sampling [0.5437605013181142]
監視された機械学習は、データ分散が時間とともに変化するコンセプトドリフトに遭遇し、パフォーマンスが低下する。
本稿では,既存のドリフト検出アルゴリズムを用いて,同種サンプルを選択する新しい手法であるドリフトサンプリング戦略(SUDS)を提案する。
本研究は, 動的環境におけるラベル付きデータ利用の最適化におけるSUDSの有効性を示すものである。
論文 参考訳(メタデータ) (2024-11-05T10:55:29Z) - Asynchronous Federated Stochastic Optimization for Heterogeneous Objectives Under Arbitrary Delays [0.0]
フェデレートラーニング(FL)は、データを複数の場所に保持するモデル("clients")をセキュアにトレーニングするために提案されている。
FLアルゴリズムの性能を阻害する2つの大きな課題は、階層化クライアントによって引き起こされる長いトレーニング時間と、非イドローカルなデータ分布("client drift")によるモデル精度の低下である。
本稿では,Asynchronous Exact Averaging (AREA, Asynchronous Exact Averaging) を提案する。Asynchronous Exact Averaging (AREA) は,通信を利用して収束を高速化し,拡張性を向上し,クライアント更新頻度の変動によるクライアントのドリフトの補正にクライアントメモリを利用する。
論文 参考訳(メタデータ) (2024-05-16T14:22:49Z) - Backpropagation-free Network for 3D Test-time Adaptation [42.469853469556966]
テスト時間適応(TTA)法は、計算的に重く、メモリ集約的なバックプロパゲーションに基づくアプローチを適用する傾向がある。
本稿では,TTAのバックプロパゲーションフリーアプローチを3次元データの特定の場合に適用する手法を提案する。
論文 参考訳(メタデータ) (2024-03-27T10:50:24Z) - Informative Data Mining for One-Shot Cross-Domain Semantic Segmentation [84.82153655786183]
Informative Data Mining (IDM) と呼ばれる新しいフレームワークを提案し、セマンティックセグメンテーションのための効率的なワンショットドメイン適応を実現する。
IDMは、最も情報性の高いサンプルを特定するために不確実性に基づく選択基準を提供し、迅速に適応し、冗長なトレーニングを減らす。
提案手法は,GTA5/SYNTHIAからCityscapesへの適応タスクにおいて,既存の手法より優れ,56.7%/55.4%の最先端のワンショット性能を実現している。
論文 参考訳(メタデータ) (2023-09-25T15:56:01Z) - Online Distributed Learning with Quantized Finite-Time Coordination [0.4910937238451484]
私たちの設定では、エージェントのセットは、ストリーミングデータから学習モデルを協調的にトレーニングする必要があります。
本稿では,量子化された有限時間協調プロトコルに依存する分散アルゴリズムを提案する。
提案アルゴリズムの性能を,オンラインソリューションからの平均距離の観点から解析する。
論文 参考訳(メタデータ) (2023-07-13T08:36:15Z) - Semi-Supervised Temporal Action Detection with Proposal-Free Masking [134.26292288193298]
PropOsal-free Temporal mask (SPOT) に基づく新しい半教師付き時間行動検出モデルを提案する。
SPOTは最先端の代替品よりも優れている。
論文 参考訳(メタデータ) (2022-07-14T16:58:47Z) - Metric Learning and Adaptive Boundary for Out-of-Domain Detection [0.9236074230806579]
我々はOODデータに依存しないOOD検出アルゴリズムを設計した。
提案アルゴリズムは,メトリック学習と適応的決定境界を併用する,シンプルだが効率的な手法に基づいている。
他のアルゴリズムと比較して,提案アルゴリズムでは,クラス数が少ないシナリオにおいて,OOD性能が大幅に向上していることが判明した。
論文 参考訳(メタデータ) (2022-04-22T17:54:55Z) - Continual Test-Time Domain Adaptation [94.51284735268597]
テスト時ドメイン適応は、ソースデータを使用しずに、ソース事前訓練されたモデルをターゲットドメインに適応することを目的としている。
CoTTAは実装が容易で、市販の事前訓練モデルに簡単に組み込むことができる。
論文 参考訳(メタデータ) (2022-03-25T11:42:02Z) - Bilevel Online Deep Learning in Non-stationary Environment [4.565872584112864]
Bilevel Online Deep Learning (BODL)フレームワークは、双方向最適化戦略とオンラインアンサンブル分類器を組み合わせたフレームワークである。
概念ドリフトが検出されると、BODLアルゴリズムはバイレベル最適化によりモデルパラメータを適応的に更新し、大きなドリフトを回避し、正の転送を促進する。
論文 参考訳(メタデータ) (2022-01-25T11:05:51Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
リモートセンシング画像からの道路セグメンテーションは、幅広い応用可能性を持つ課題である。
本稿では,この領域における領域シフト(DS)問題に対処するため,RoadDAと呼ばれる新たな段階的ドメイン適応モデルを提案する。
2つのベンチマーク実験の結果、RoadDAはドメインギャップを効率的に減らし、最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-08-28T09:29:14Z) - Higher Performance Visual Tracking with Dual-Modal Localization [106.91097443275035]
Visual Object Tracking (VOT)は、堅牢性と正確性の両方に同期性を必要とする。
ONRによるロバストなローカリゼーション抑制器とOFCによるターゲットセンターへの正確なローカリゼーションにより、ターゲットローカリゼーションのためのデュアルモーダルフレームワークを提案します。
論文 参考訳(メタデータ) (2021-03-18T08:47:56Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。