Designing Conversational AI to Support Think-Aloud Practice in Technical Interview Preparation for CS Students
- URL: http://arxiv.org/abs/2507.14418v1
- Date: Sat, 19 Jul 2025 00:15:05 GMT
- Title: Designing Conversational AI to Support Think-Aloud Practice in Technical Interview Preparation for CS Students
- Authors: Taufiq Daryanto, Sophia Stil, Xiaohan Ding, Daniel Manesh, Sang Won Lee, Tim Lee, Stephanie Lunn, Sarah Rodriguez, Chris Brown, Eugenia Rho,
- Abstract summary: We conducted a study with 17 participants using an LLM-based technical interview practice tool.<n>Key design recommendations include promoting social presence in conversational AI for technical interview simulation.<n>We examined broader considerations, including intersectional challenges and potential strategies to address them.
- Score: 8.444343781409207
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One challenge in technical interviews is the think-aloud process, where candidates verbalize their thought processes while solving coding tasks. Despite its importance, opportunities for structured practice remain limited. Conversational AI offers potential assistance, but limited research explores user perceptions of its role in think-aloud practice. To address this gap, we conducted a study with 17 participants using an LLM-based technical interview practice tool. Participants valued AI's role in simulation, feedback, and learning from generated examples. Key design recommendations include promoting social presence in conversational AI for technical interview simulation, providing feedback beyond verbal content analysis, and enabling crowdsourced think-aloud examples through human-AI collaboration. Beyond feature design, we examined broader considerations, including intersectional challenges and potential strategies to address them, how AI-driven interview preparation could promote equitable learning in computing careers, and the need to rethink AI's role in interview practice by suggesting a research direction that integrates human-AI collaboration.
Related papers
- Methodological Foundations for AI-Driven Survey Question Generation [41.94295877935867]
This paper presents a methodological framework for using generative AI in educational survey research.<n>We explore how Large Language Models can generate adaptive, context-aware survey questions.<n>We examine ethical issues such as bias, privacy, and transparency.
arXiv Detail & Related papers (2025-05-02T09:50:34Z) - Assessing employment and labour issues implicated by using AI [0.0]
The chapter critiques the dominant reductionist approach in AI and work studies.<n>It advocates for a systemic perspective that emphasizes the interdependence of tasks, roles, and workplace contexts.
arXiv Detail & Related papers (2025-04-08T10:14:19Z) - Computational Thinking with Computer Vision: Developing AI Competency in an Introductory Computer Science Course [0.0]
This paper introduces an introductory computer science course where students learn computational thinking through computer vision.<n>The course aims to achieve computational thinking outcomes alongside critical thinking outcomes that expose students to AI approaches and their societal implications.
arXiv Detail & Related papers (2025-03-24T15:49:37Z) - How Performance Pressure Influences AI-Assisted Decision Making [57.53469908423318]
We show how pressure and explainable AI (XAI) techniques interact with AI advice-taking behavior.<n>Our results show complex interaction effects, with different combinations of pressure and XAI techniques either improving or worsening AI advice taking behavior.
arXiv Detail & Related papers (2024-10-21T22:39:52Z) - Designing and Evaluating Dialogue LLMs for Co-Creative Improvised Theatre [48.19823828240628]
This study presents Large Language Models (LLMs) deployed in a month-long live show at the Edinburgh Festival Fringe.
We explore the technical capabilities and constraints of on-the-spot multi-party dialogue.
Our human-in-the-loop methodology underlines the challenges of these LLMs in generating context-relevant responses.
arXiv Detail & Related papers (2024-05-11T23:19:42Z) - Augmenting the Author: Exploring the Potential of AI Collaboration in Academic Writing [25.572926673827165]
This case study highlights the importance of prompt design, output analysis, and recognizing the AI's limitations to ensure responsible and effective AI integration in scholarly work.
The paper contributes to the field of Human-Computer Interaction by exploring effective prompt strategies and providing a comparative analysis of Gen AI models.
arXiv Detail & Related papers (2024-04-23T19:06:39Z) - Combatting Human Trafficking in the Cyberspace: A Natural Language
Processing-Based Methodology to Analyze the Language in Online Advertisements [55.2480439325792]
This project tackles the pressing issue of human trafficking in online C2C marketplaces through advanced Natural Language Processing (NLP) techniques.
We introduce a novel methodology for generating pseudo-labeled datasets with minimal supervision, serving as a rich resource for training state-of-the-art NLP models.
A key contribution is the implementation of an interpretability framework using Integrated Gradients, providing explainable insights crucial for law enforcement.
arXiv Detail & Related papers (2023-11-22T02:45:01Z) - The Participatory Turn in AI Design: Theoretical Foundations and the
Current State of Practice [64.29355073494125]
This article aims to ground what we dub the "participatory turn" in AI design by synthesizing existing theoretical literature on participation.
We articulate empirical findings concerning the current state of participatory practice in AI design based on an analysis of recently published research and semi-structured interviews with 12 AI researchers and practitioners.
arXiv Detail & Related papers (2023-10-02T05:30:42Z) - An Uncommon Task: Participatory Design in Legal AI [64.54460979588075]
We examine a notable yet understudied AI design process in the legal domain that took place over a decade ago.
We show how an interactive simulation methodology allowed computer scientists and lawyers to become co-designers.
arXiv Detail & Related papers (2022-03-08T15:46:52Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
This paper aims to ground what we dub a 'participatory turn' in AI design by synthesizing existing literature on participation and through empirical analysis of its current practices.
Based on our literature synthesis and empirical research, this paper presents a conceptual framework for analyzing participatory approaches to AI design.
arXiv Detail & Related papers (2021-11-01T17:57:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.