Ground and excited-state energies with analytic errors and short time evolution on a quantum computer
- URL: http://arxiv.org/abs/2507.15148v1
- Date: Sun, 20 Jul 2025 22:56:00 GMT
- Title: Ground and excited-state energies with analytic errors and short time evolution on a quantum computer
- Authors: Timothy Stroschein, Davide Castaldo, Markus Reiher,
- Abstract summary: Accurately solving the Schr"odinger equation remains a central challenge in computational physics, chemistry, and materials science.<n>We propose an alternative eigenvalue problem based on a system's autocorrelation function, avoiding direct reference to a wave function.<n>We develop a rigorous approximation framework that enables precise frequency estimation from a finite number of signal samples.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurately solving the Schr\"odinger equation remains a central challenge in computational physics, chemistry, and materials science. Here, we propose an alternative eigenvalue problem based on a system's autocorrelation function, avoiding direct reference to a wave function. In particular, we develop a rigorous approximation framework that enables precise frequency estimation from a finite number of signal samples. Our analysis builds on new results involving prolate spheroidal wave functions and yields error bounds that reveal a sharp accuracy transition governed by the observation time and spectral density of the signal. These results are very general and thus carry far. As one important example application we consider the quantum computation for molecular systems. By combining our spectral method with a quantum subroutine for signal generation, we define quantum prolate diagonalization (QPD) - a hybrid classical-quantum algorithm. QPD simultaneously estimates ground and excited state energies within chemical accuracy at the Heisenberg limit. An analysis of different input states demonstrates the robustness of the method, showing that high precision can be retained even under imperfect state preparation.
Related papers
- Grassmann Variational Monte Carlo with neural wave functions [45.935798913942904]
We formalize the framework introduced by Pfau et al.citepfau2024accurate in terms of Grassmann geometry of the Hilbert space.<n>We validate our approach on the Heisenberg quantum spin model on the square lattice, achieving highly accurate energies and physical observables for a large number of excited states.
arXiv Detail & Related papers (2025-07-14T13:53:13Z) - Polynomial-time-scaling quantum dynamics with time-dependent quantum Monte Carlo [0.0]
We study the dynamics of many-body quantum systems using time dependent quantum Monte Carlo method.<n>We use effective potentials to accounts for the local and nonlocal quantum correlations in time-varying fields.
arXiv Detail & Related papers (2025-01-27T15:26:40Z) - Solving reaction dynamics with quantum computing algorithms [42.408991654684876]
We study quantum algorithms for response functions, relevant for describing different reactions governed by linear response.<n>We focus on nuclear-physics applications and consider a qubit-efficient mapping on the lattice, which can efficiently represent the large volumes required for realistic scattering simulations.
arXiv Detail & Related papers (2024-03-30T00:21:46Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Accurate harmonic vibrational frequencies for diatomic molecules via
quantum computing [0.0]
We propose a promising qubit-efficient quantum computational approach to calculate the harmonic vibrational frequencies of a set of neutral closed-shell diatomic molecules.
We show that the variational quantum circuit with the chemistry-inspired UCCSD ansatz can achieve the same accuracy as the exact diagonalization method.
arXiv Detail & Related papers (2023-12-19T16:44:49Z) - Calculating the many-body density of states on a digital quantum
computer [58.720142291102135]
We implement a quantum algorithm to perform an estimation of the density of states on a digital quantum computer.
We use our algorithm to estimate the density of states of a non-integrable Hamiltonian on the Quantinuum H1-1 trapped ion chip for a controlled register of 18bits.
arXiv Detail & Related papers (2023-03-23T17:46:28Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Quantum Computation of Hydrogen Bond Dynamics and Vibrational Spectra [0.37187295985559027]
We introduce a framework for solving hydrogen-bond systems and more generic chemical dynamics problems using quantum logic.
We experimentally demonstrate a proof-of-principle instance of our method using the QSCOUT ion-trap quantum computer.
Our approach introduces a new paradigm for studying the quantum chemical dynamics and vibrational spectra of molecules.
arXiv Detail & Related papers (2022-04-18T21:42:54Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Pushing the limits in real-time measurements of quantum dynamics [0.0]
We show that an evaluation scheme based on factorial cumulants can reduce the influence of such errors by orders of magnitude.
The error resilience is supported by a general theory for the detection errors as well as experimental data of single-electron tunnelling through a self-assembled quantum dot.
arXiv Detail & Related papers (2021-06-23T16:21:57Z) - Gate-free state preparation for fast variational quantum eigensolver
simulations: ctrl-VQE [0.0]
VQE is currently the flagship algorithm for solving electronic structure problems on near-term quantum computers.
We propose an alternative algorithm where the quantum circuit used for state preparation is removed entirely and replaced by a quantum control routine.
As with VQE, the objective function optimized is the expectation value of the qubit-mapped molecular Hamiltonian.
arXiv Detail & Related papers (2020-08-10T17:53:09Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.