論文の概要: Enhancing Stability of Physics-Informed Neural Network Training Through Saddle-Point Reformulation
- arxiv url: http://arxiv.org/abs/2507.16008v1
- Date: Mon, 21 Jul 2025 18:59:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 21:34:13.857276
- Title: Enhancing Stability of Physics-Informed Neural Network Training Through Saddle-Point Reformulation
- Title(参考訳): サドル点修正による物理インフォームニューラルネットワークトレーニングの安定性向上
- Authors: Dmitry Bylinkin, Mikhail Aleksandrov, Savelii Chezhegov, Aleksandr Beznosikov,
- Abstract要約: 近年,物理インフォームドニューラルネットワーク (PIN) が注目されている。
この問題に対処するため、我々は、彼らのランドスケープを非強固な凹点問題として再考する。
提案手法は現在の最先端技術よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 44.31966204357333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs) have gained prominence in recent years and are now effectively used in a number of applications. However, their performance remains unstable due to the complex landscape of the loss function. To address this issue, we reformulate PINN training as a nonconvex-strongly concave saddle-point problem. After establishing the theoretical foundation for this approach, we conduct an extensive experimental study, evaluating its effectiveness across various tasks and architectures. Our results demonstrate that the proposed method outperforms the current state-of-the-art techniques.
- Abstract(参考訳): 近年,物理インフォームドニューラルネットワーク (PINN) が注目されている。
しかし、損失関数の複雑な景観のため、その性能は不安定である。
この問題に対処するため, PINNトレーニングを非凸型コンケーブサドルポイント問題として再検討する。
このアプローチの理論的基礎を確立した後、様々なタスクやアーキテクチャにおいて、その有効性を評価する広範な実験を行った。
提案手法は現在の最先端技術よりも優れていることを示す。
関連論文リスト
- Stable Weight Updating: A Key to Reliable PDE Solutions Using Deep Learning [0.0]
本稿では,物理インフォームドニューラルネットワーク(PINN)の安定性と精度の向上を目的とした,新しい残差ベースアーキテクチャを提案する。
このアーキテクチャは、残りの接続を組み込むことで従来のニューラルネットワークを強化し、よりスムーズなウェイト更新を可能にし、バックプロパゲーション効率を向上させる。
特にSquared Residual Networkは、従来のニューラルネットワークと比較して安定性と精度の向上を実現し、堅牢なパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-07-10T05:20:43Z) - Architectural Strategies for the optimization of Physics-Informed Neural
Networks [30.92757082348805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)における前方および逆問題に対処するための有望な道を提供する
その顕著な経験的成功にもかかわらず、PINNは様々なPDEで悪名高いトレーニング課題の評判を得た。
論文 参考訳(メタデータ) (2024-02-05T04:15:31Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Ensemble learning for Physics Informed Neural Networks: a Gradient Boosting approach [10.250994619846416]
段階的強化(GB)と呼ばれる新しい訓練パラダイムを提案する。
与えられたPDEの解を1つのニューラルネットワークで直接学習する代わりに、我々のアルゴリズムは、より優れた結果を得るために、一連のニューラルネットワークを用いています。
この研究は、PINNでアンサンブル学習技術を採用するための扉も開ける。
論文 参考訳(メタデータ) (2023-02-25T19:11:44Z) - How to Avoid Trivial Solutions in Physics-Informed Neural Networks [0.0]
本研究では,物理に基づくペナルティ項の強制に使用されるコロケーション点数に関して,PINNの予測性能について検討する。
PINNは、定義によって物理由来のペナルティ項を満たす自明な解を学習し、失敗する可能性があることを示す。
我々は,データスカース設定におけるPINNの根本的問題と競合する結果に対処するための代替的なサンプリング手法と新たなペナルティ項を開発した。
論文 参考訳(メタデータ) (2021-12-10T15:54:54Z) - Physics-guided Loss Functions Improve Deep Learning Performance in
Inverse Scattering [13.529767949868248]
ディープニューラルネットワーク(DNN)技術は、電磁逆散乱問題にうまく応用されている。
トレーニングプロセスにおいて,身体現象が効果的に組み込まれないことを示す。
多重散乱に基づく近接場量を含む損失関数の新しい設計法を提案する。
論文 参考訳(メタデータ) (2021-11-13T16:36:23Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - A Theoretical Framework for Target Propagation [75.52598682467817]
我々は、バックプロパゲーション(BP)の代替として人気があるが、まだ完全には理解されていないターゲット伝搬(TP)を解析する。
提案理論は,TPがガウス・ニュートン最適化と密接に関係していることを示し,BPとは大きく異なる。
我々は,フィードバックウェイトトレーニングを改善する新しいリコンストラクション損失を通じて,この問題に対する第1の解決策を提供する。
論文 参考訳(メタデータ) (2020-06-25T12:07:06Z) - Disturbance-immune Weight Sharing for Neural Architecture Search [96.93812980299428]
本稿では,モデル更新のための乱れ免疫更新戦略を提案する。
我々は,パフォーマンス障害リスクを軽減するための戦略の有効性を理論的に分析する。
論文 参考訳(メタデータ) (2020-03-29T17:54:49Z) - Robust Pruning at Initialization [61.30574156442608]
計算リソースが限られているデバイス上で、機械学習アプリケーションを使用するための、より小さく、エネルギー効率のよいニューラルネットワークの必要性が高まっている。
ディープNNにとって、このような手順はトレーニングが困難であり、例えば、ひとつの層が完全に切断されるのを防ぐことができないため、満足できないままである。
論文 参考訳(メタデータ) (2020-02-19T17:09:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。