論文の概要: Stable Weight Updating: A Key to Reliable PDE Solutions Using Deep Learning
- arxiv url: http://arxiv.org/abs/2407.07375v1
- Date: Wed, 10 Jul 2024 05:20:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 17:41:30.252671
- Title: Stable Weight Updating: A Key to Reliable PDE Solutions Using Deep Learning
- Title(参考訳): 安定したウェイト更新:ディープラーニングを用いた信頼性の高いPDEソリューションの鍵
- Authors: A. Noorizadegan, R. Cavoretto, D. L. Young, C. S. Chen,
- Abstract要約: 本稿では,物理インフォームドニューラルネットワーク(PINN)の安定性と精度の向上を目的とした,新しい残差ベースアーキテクチャを提案する。
このアーキテクチャは、残りの接続を組み込むことで従来のニューラルネットワークを強化し、よりスムーズなウェイト更新を可能にし、バックプロパゲーション効率を向上させる。
特にSquared Residual Networkは、従来のニューラルネットワークと比較して安定性と精度の向上を実現し、堅牢なパフォーマンスを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: Deep learning techniques, particularly neural networks, have revolutionized computational physics, offering powerful tools for solving complex partial differential equations (PDEs). However, ensuring stability and efficiency remains a challenge, especially in scenarios involving nonlinear and time-dependent equations. Methodology: This paper introduces novel residual-based architectures, namely the Simple Highway Network and the Squared Residual Network, designed to enhance stability and accuracy in physics-informed neural networks (PINNs). These architectures augment traditional neural networks by incorporating residual connections, which facilitate smoother weight updates and improve backpropagation efficiency. Results: Through extensive numerical experiments across various examples including linear and nonlinear, time-dependent and independent PDEs we demonstrate the efficacy of the proposed architectures. The Squared Residual Network, in particular, exhibits robust performance, achieving enhanced stability and accuracy compared to conventional neural networks. These findings underscore the potential of residual-based architectures in advancing deep learning for PDEs and computational physics applications.
- Abstract(参考訳): 背景: ディープラーニング技術、特にニューラルネットワークは、計算物理学に革命をもたらし、複雑な偏微分方程式(PDE)を解く強力なツールを提供している。
しかし、特に非線形方程式や時間依存方程式を含むシナリオでは、安定性と効率性の確保は依然として課題である。
方法:本論文では,物理インフォームドニューラルネットワーク(PINN)の安定性と精度向上を目的とした,新しい残差型アーキテクチャであるSimple Highway NetworkとSquared Residual Networkを紹介する。
これらのアーキテクチャは、残りの接続を組み込むことで従来のニューラルネットワークを強化し、よりスムーズなウェイト更新を可能にし、バックプロパゲーション効率を向上させる。
結果: 線形および非線形, 時間依存, 独立なPDEを含む多種多様な数値実験を行い, 提案手法の有効性を実証した。
特にSquared Residual Networkは、従来のニューラルネットワークと比較して安定性と精度の向上を実現し、堅牢なパフォーマンスを示している。
これらの知見は,PDEの深層学習と計算物理応用における残差に基づくアーキテクチャの可能性を明らかにするものである。
関連論文リスト
- Enriched Physics-informed Neural Networks for Dynamic
Poisson-Nernst-Planck Systems [0.8192907805418583]
本稿では、動的Poisson-Nernst-Planck(PNP)方程式を解くために、メッシュレス深層学習アルゴリズム、EPINN(enriched Physics-informed Neural Network)を提案する。
EPINNは、従来の物理インフォームドニューラルネットワークを基盤フレームワークとして、損失関数のバランスをとるために適応的な損失重みを追加する。
数値計算の結果, 結合された非線形系の解法において, 従来の数値法よりも適用性が高いことがわかった。
論文 参考訳(メタデータ) (2024-02-01T02:57:07Z) - Neural Networks with Kernel-Weighted Corrective Residuals for Solving
Partial Differential Equations [0.0]
非線形PDEシステムを解くためにカーネル法とディープNNの長所を統合するためにカーネル重み付き補正残差(CoRes)を導入する。
CoResは幅広いベンチマーク問題の解決において競合する手法を一貫して上回っている。
我々はPDEの解決にカーネル手法を活用することに新たな関心を喚起する可能性があると考えている。
論文 参考訳(メタデータ) (2024-01-07T14:09:42Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Physics-aware deep learning framework for linear elasticity [0.0]
本稿では,線形連続弾性問題に対する効率的で堅牢なデータ駆動型ディープラーニング(DL)計算フレームワークを提案する。
フィールド変数の正確な表現のために,多目的損失関数を提案する。
弾性に対するAirimaty解やKirchhoff-Loveプレート問題を含むいくつかのベンチマーク問題を解く。
論文 参考訳(メタデータ) (2023-02-19T20:33:32Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving
Spatiotemporal PDEs [8.220908558735884]
偏微分方程式 (Partial differential equation, PDE) は、幅広い分野の問題をモデル化し、シミュレーションする上で基礎的な役割を果たす。
近年のディープラーニングの進歩は、データ駆動逆解析の基盤としてPDEを解くために物理学インフォームドニューラルネットワーク(NN)の大きな可能性を示している。
本稿では,PDEをラベル付きデータなしで解くための物理インフォームド・畳み込み学習アーキテクチャ(PhyCRNetとPhCRyNet-s)を提案する。
論文 参考訳(メタデータ) (2021-06-26T22:22:19Z) - Physics-informed attention-based neural network for solving non-linear
partial differential equations [6.103365780339364]
物理情報ニューラルネットワーク(PINN)は、物理プロセスのモデリングにおいて大幅な改善を実現しました。
PINNは単純なアーキテクチャに基づいており、ネットワークパラメータを最適化することで複雑な物理システムの振る舞いを学習し、基礎となるPDEの残余を最小限に抑える。
ここでは、非線形PDEの複雑な振る舞いを学ぶのに、どのネットワークアーキテクチャが最適かという問題に対処する。
論文 参考訳(メタデータ) (2021-05-17T14:29:08Z) - Kernel-Based Smoothness Analysis of Residual Networks [85.20737467304994]
ResNets(Residual Networks)は、これらの強力なモダンアーキテクチャの中でも際立っている。
本稿では,2つのモデル,すなわちResNetsが勾配よりもスムーズな傾向を示す。
論文 参考訳(メタデータ) (2020-09-21T16:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。