SpiroLLM: Finetuning Pretrained LLMs to Understand Spirogram Time Series with Clinical Validation in COPD Reporting
- URL: http://arxiv.org/abs/2507.16145v1
- Date: Tue, 22 Jul 2025 01:44:12 GMT
- Title: SpiroLLM: Finetuning Pretrained LLMs to Understand Spirogram Time Series with Clinical Validation in COPD Reporting
- Authors: Shuhao Mei, Yongchao Long, Shan Cao, Xiaobo Han, Shijia Geng, Jinbo Sun, Yuxi Zhou, Shenda Hong,
- Abstract summary: COPD is a major chronic respiratory disease with persistent airflow limitation.<n>Current AI models for COPD diagnosis are limited to outputting classification results.<n>We propose SpiroLLM, the first multimodal large language model that can understand spirogram.
- Score: 11.789239660318337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chronic Obstructive Pulmonary Disease (COPD), a major chronic respiratory disease with persistent airflow limitation, is a leading global cause of disability and mortality. Respiratory spirogram time series, routinely collected during pulmonary function tests (PFTs), play a critical role in the early detection of repsiratory diseases and in monitoring lung function over time. However, most current AI models for COPD diagnosis are limited to outputting classification results without providing a rationale for their diagnostic process, while current Large Language Models (LLMs) cannot understand spirograms yet, which severely limits their clinical trust and adoption. To tackle this challenge, we leverage a cohort of 234,028 individuals from the UK Biobank (UKB) to propose SpiroLLM, the first multimodal large language model that can understand spirogram. The model extracts morphological features from respiratory curves via a SpiroEncoder and aligns them with PFT numerical values in a unified latent space using a SpiroProjector, ultimately empowering a large language model to generate a comprehensive diagnostic report. Experimental results confirm that SpiroLLM achieved a diagnostic AUROC of 0.8980 (95% CI: 0.8820-0.9132). In a robustness test with missing core data, it maintained a 100% valid response rate, far surpassing the 13.4% of a text-only model and showcasing the superiority of its multimodal design. This work demonstrates the substantial potential of deeply fusing physiological signals with large language models, establishing a new paradigm for the next generation of interpretable and reliable clinical decision support tools.
Related papers
- Advancing Lung Disease Diagnosis in 3D CT Scans [19.844531606142496]
We analyze the characteristics of 3D CT scans and remove non-lung regions, which helps the model focus on lesion-related areas.<n>Our model achieves a Macro F1 Score of 0.80 on the validation set of the Fair Disease Diagnosis Challenge.
arXiv Detail & Related papers (2025-07-01T17:44:53Z) - CXR-LT 2024: A MICCAI challenge on long-tailed, multi-label, and zero-shot disease classification from chest X-ray [64.2434525370243]
The CXR-LT series is a community-driven initiative designed to enhance lung disease classification using chest X-rays.<n>The CXR-LT 2024 expands the dataset to 377,110 chest X-rays (CXRs) and 45 disease labels, including 19 new rare disease findings.<n>This paper provides an overview of CXR-LT 2024, detailing the data curation process and consolidating state-of-the-art solutions.
arXiv Detail & Related papers (2025-06-09T17:53:31Z) - Fast-staged CNN Model for Accurate pulmonary diseases and Lung cancer detection [0.0]
This research evaluates a deep learning model designed to detect lung cancer, specifically pulmonary nodules, along with eight other lung pathologies, using chest radiographs.<n>A two-stage classification system, utilizing ensemble methods and transfer learning, is employed to first triage images into Normal or Abnormal.<n>The model achieves notable results in classification, with a top-performing accuracy of 77%, a sensitivity of 0.713, a specificity of 0.776 during external validation, and an AUC score of 0.888.
arXiv Detail & Related papers (2024-12-16T11:47:07Z) - Multilabel Classification for Lung Disease Detection: Integrating Deep Learning and Natural Language Processing [0.0]
We propose a novel transfer learning model for multi-label lung disease classification.<n>The proposed model achieved an F1 score of 0.69 and an AUROC of 0.86, demonstrating its potential for clinical applications.
arXiv Detail & Related papers (2024-12-16T05:14:08Z) - Towards Reliable and Explainable AI Model for Solid Pulmonary Nodule
Diagnosis [20.510918720980467]
Lung cancer has the highest mortality rate of deadly cancers in the world.
Computer-aided diagnosis (CAD) systems have been developed to assist radiologists in nodule detection and diagnosis.
Lack of model reliability and interpretability remains a major obstacle for its large-scale clinical application.
arXiv Detail & Related papers (2022-04-08T08:21:00Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Development of a Multi-Task Learning V-Net for Pulmonary Lobar
Segmentation on Computed Tomography and Application to Diseased Lungs [0.19573380763700707]
Diseased lung regions often produce high-density zones on CT images, limiting an algorithm's execution to specify damaged lobes.
This impact motivated developing an improved machine learning method to segment lung lobes.
The approach can be readily adopted in the clinical setting as a robust tool for radiologists.
arXiv Detail & Related papers (2021-05-11T17:10:25Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.