論文の概要: ScSAM: Debiasing Morphology and Distributional Variability in Subcellular Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2507.17149v1
- Date: Wed, 23 Jul 2025 02:28:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-24 22:33:14.833362
- Title: ScSAM: Debiasing Morphology and Distributional Variability in Subcellular Semantic Segmentation
- Title(参考訳): ScSAM: 細胞外セマンティックセグメンテーションにおける形態と分布の多様性
- Authors: Bo Fang, Jianan Fan, Dongnan Liu, Hang Chang, Gerald J. Shami, Filip Braet, Weidong Cai,
- Abstract要約: 細胞内成分の形態的および分布的変動は、学習に基づくオルガネラセグメンテーションモデルにおいて長年の課題となっている。
我々は,masked Autoencoder (MAE) 誘導のセルラー事前知識を用いて,事前学習したSAMを融合させることにより,特徴の堅牢性を高める手法であるScSAMを紹介する。
- 参考スコア(独自算出の注目度): 9.736227545778208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The significant morphological and distributional variability among subcellular components poses a long-standing challenge for learning-based organelle segmentation models, significantly increasing the risk of biased feature learning. Existing methods often rely on single mapping relationships, overlooking feature diversity and thereby inducing biased training. Although the Segment Anything Model (SAM) provides rich feature representations, its application to subcellular scenarios is hindered by two key challenges: (1) The variability in subcellular morphology and distribution creates gaps in the label space, leading the model to learn spurious or biased features. (2) SAM focuses on global contextual understanding and often ignores fine-grained spatial details, making it challenging to capture subtle structural alterations and cope with skewed data distributions. To address these challenges, we introduce ScSAM, a method that enhances feature robustness by fusing pre-trained SAM with Masked Autoencoder (MAE)-guided cellular prior knowledge to alleviate training bias from data imbalance. Specifically, we design a feature alignment and fusion module to align pre-trained embeddings to the same feature space and efficiently combine different representations. Moreover, we present a cosine similarity matrix-based class prompt encoder to activate class-specific features to recognize subcellular categories. Extensive experiments on diverse subcellular image datasets demonstrate that ScSAM outperforms state-of-the-art methods.
- Abstract(参考訳): 細胞内成分間の有意な形態的および分布的変動は、学習に基づくオルガネラセグメンテーションモデルに長年の課題をもたらし、偏りのある特徴学習のリスクを著しく高める。
既存の手法は、しばしば単一のマッピング関係に頼り、特徴の多様性を見落とし、バイアスのあるトレーニングを誘発する。
SAM(Segment Anything Model)は、リッチな特徴表現を提供するが、その細胞内シナリオへの応用には、2つの大きな課題がある。
2)SAMはグローバルな文脈理解に重点を置いており,細粒度の空間的詳細を無視することが多いため,微妙な構造変化を捉え,歪んだデータ分布に対処することが困難である。
このような課題に対処するために,Masked Autoencoder (MAE) 誘導のセルラー事前知識を用いて事前学習したSAMを融合させて,データ不均衡からトレーニングバイアスを軽減することにより,特徴の堅牢性を高める手法であるScSAMを紹介する。
具体的には、事前学習した埋め込みを同じ特徴空間にアライメントし、異なる表現を効率的に組み合わせる機能アライメントと融合モジュールを設計する。
さらに,コサイン類似度行列に基づくクラスプロンプトエンコーダを用いて,クラス固有の特徴を活性化し,細胞内のカテゴリを認識する。
多様な細胞内画像データセットに対する大規模な実験により、ScSAMは最先端の手法より優れていることが示された。
関連論文リスト
- CKAA: Cross-subspace Knowledge Alignment and Aggregation for Robust Continual Learning [80.18781219542016]
継続的学習(CL)は、シーケンシャルなタスクストリームから継続的に学習するAIモデルに権限を与える。
近年,パラメータ効率のよい微調整(PEFT)によるCL法が注目されている。
ミスリード型タスクIDに対するロバスト性を高めるために,クロスサブスペース・ナレッジアライメント・アグリゲーション(CKAA)を提案する。
論文 参考訳(メタデータ) (2025-07-13T03:11:35Z) - scMamba: A Scalable Foundation Model for Single-Cell Multi-Omics Integration Beyond Highly Variable Feature Selection [5.139014238424409]
scMambaはシングルセルのマルチオミクスデータを事前のフィーチャ選択を必要とせずに統合するために設計されたモデルである。
scMambaは、高次元のスパースシングルセルマルチオミクスデータから豊富な生物学的洞察を蒸留する。
われわれは scMamba を大規模シングルセルマルチオミクス統合の強力なツールとして位置づけた。
論文 参考訳(メタデータ) (2025-06-25T12:58:01Z) - Benchmarking histopathology foundation models in a multi-center dataset for skin cancer subtyping [1.927195358774599]
大規模なドメイン内データセットの事前トレーニングは、履歴病理基盤モデル(FM)にタスクに依存しないデータ表現を学習する能力を与える。
計算病理学では、スライド全体の自動解析には、スライドのギガピクセルスケールのため、複数のインスタンス学習(MIL)フレームワークが必要である。
本研究は,MIL分類フレームワーク内のパッチレベルの特徴抽出器として,病理組織学的FMを評価するための新しいベンチマークを提案する。
論文 参考訳(メタデータ) (2025-06-23T14:12:16Z) - Temporal-Spectral-Spatial Unified Remote Sensing Dense Prediction [62.376936772702905]
リモートセンシングのための現在のディープラーニングアーキテクチャは、基本的に堅固である。
本稿では,統合モデリングのための空間時間スペクトル統一ネットワーク(STSUN)について紹介する。
STSUNは任意の空間サイズ、時間長、スペクトル帯域で入力および出力データに適応することができる。
トレーニング可能なタスクの埋め込みにモデルを条件付けすることで、単一のアーキテクチャ内で異なる密集した予測タスクを統一する。
論文 参考訳(メタデータ) (2025-05-18T07:39:17Z) - MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention [52.106879463828044]
病理組織学と転写学は、腫瘍学の基本的なモダリティであり、疾患の形態学的および分子的側面を包含している。
モーダルアライメントと保持を両立させる新しいマルチモーダル表現学習法であるMIRRORを提案する。
がんの亜型化と生存分析のためのTCGAコホートに関する広範囲な評価は,MIRRORの優れた性能を浮き彫りにしている。
論文 参考訳(メタデータ) (2025-03-01T07:02:30Z) - ISAM-MTL: Cross-subject multi-task learning model with identifiable spikes and associative memory networks [6.240145569484483]
脳波のクロスオブジェクト変動は、現在のディープラーニングモデルの性能を低下させる。
本稿では,識別可能なスパイキング(IS)表現と連想メモリ(AM)ネットワークに基づくマルチタスク学習(MTL)脳波分類モデルISAM-MTLを提案する。
論文 参考訳(メタデータ) (2025-01-30T02:00:48Z) - MVKTrans: Multi-View Knowledge Transfer for Robust Multiomics Classification [14.533025681231294]
そこで本研究では,生物内および生物間知識を適応的に伝達する多視点知識伝達学習フレームワークを提案する。
具体的には、未ラベルデータに基づいて訓練されたグラフコントラストモジュールを設計し、基礎となるオミクス内パターンを教師付きタスクに効果的に学習し、転送する。
異なる疾患および/またはサンプルにおけるモダリティの識別能力の変化を考慮して, 適応型および双方向のクロスオミクス蒸留モジュールを導入する。
論文 参考訳(メタデータ) (2024-11-13T15:45:46Z) - Learning Invariant Molecular Representation in Latent Discrete Space [52.13724532622099]
本稿では,分散シフトに対する不変性とロバスト性を示す分子表現を学習するための新しい枠組みを提案する。
我々のモデルは、様々な分布シフトが存在する場合に、最先端のベースラインに対してより強力な一般化を実現する。
論文 参考訳(メタデータ) (2023-10-22T04:06:44Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Learning Multiscale Consistency for Self-supervised Electron Microscopy
Instance Segmentation [48.267001230607306]
本稿では,EMボリュームのマルチスケール一貫性を高める事前学習フレームワークを提案する。
当社のアプローチでは,強力なデータ拡張と弱いデータ拡張を統合することで,Siameseネットワークアーキテクチャを活用している。
効果的にボクセルと機能の一貫性をキャプチャし、EM分析のための転送可能な表現を学習する。
論文 参考訳(メタデータ) (2023-08-19T05:49:13Z) - Rethinking Mitosis Detection: Towards Diverse Data and Feature
Representation [30.882319057927052]
ミトコンドリア検出のための新しい一般化可能なフレームワーク(MitDet)を提案する。
提案手法は,いくつかの一般的なミトーシス検出データセットにおいて,SOTAのアプローチよりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-07-12T03:33:11Z) - Meta-Causal Feature Learning for Out-of-Distribution Generalization [71.38239243414091]
本稿では,協調タスク生成モジュール (BTG) とメタ因果特徴学習モジュール (MCFL) を含む,バランス付きメタ因果学習器 (BMCL) を提案する。
BMCLは、分類のためのクラス不変の視覚領域を効果的に識別し、最先端の手法の性能を向上させるための一般的なフレームワークとして機能する。
論文 参考訳(メタデータ) (2022-08-22T09:07:02Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
セマンティックセグメンテーションのためのモデルに依存しない訓練手法を提案する。
各トレーニングイテレーションで特定のクラス情報をランダムに除去することにより、クラス間の機能依存を効果的に削減する。
提案手法で訓練したモデルは,複数のセマンティックセグメンテーションベンチマークにおいて強い結果を示す。
論文 参考訳(メタデータ) (2021-10-31T16:15:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。