論文の概要: Sparse identification of nonlinear dynamics with library optimization mechanism: Recursive long-term prediction perspective
- arxiv url: http://arxiv.org/abs/2507.18220v1
- Date: Thu, 24 Jul 2025 09:15:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-25 15:10:43.322895
- Title: Sparse identification of nonlinear dynamics with library optimization mechanism: Recursive long-term prediction perspective
- Title(参考訳): ライブラリ最適化機構を用いた非線形力学のスパース同定:再帰的長期予測の観点から
- Authors: Ansei Yonezawa, Heisei Yonezawa, Shuichi Yahagi, Itsuro Kajiwara, Shinya Kijimoto, Hikaru Taniuchi, Kentaro Murakami,
- Abstract要約: 本研究では,スパース回帰手法とライブラリの新たな学習戦略を組み合わせたライブラリ最適化機構(SINDy-LOM)を提案する。
得られたSINDy-LOMモデルは,提案手法が擬似モデルを生成するため,高い解釈性とユーザビリティを有する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The sparse identification of nonlinear dynamics (SINDy) approach can discover the governing equations of dynamical systems based on measurement data, where the dynamical model is identified as the sparse linear combination of the given basis functions. A major challenge in SINDy is the design of a library, which is a set of candidate basis functions, as the appropriate library is not trivial for many dynamical systems. To overcome this difficulty, this study proposes SINDy with library optimization mechanism (SINDy-LOM), which is a combination of the sparse regression technique and the novel learning strategy of the library. In the proposed approach, the basis functions are parametrized. The SINDy-LOM approach involves a two-layer optimization architecture: the inner-layer, in which the data-driven model is extracted as the sparse linear combination of the candidate basis functions, and the outer-layer, in which the basis functions are optimized from the viewpoint of the recursive long-term (RLT) prediction accuracy; thus, the library design is reformulated as the optimization of the parametrized basis functions. The resulting SINDy-LOM model has good interpretability and usability, as the proposed approach yields the parsimonious model. The library optimization mechanism significantly reduces user burden. The RLT perspective improves the reliability of the resulting model compared with the traditional SINDy approach that can only ensure the one-step-ahead prediction accuracy. The validity of the proposed approach is demonstrated by applying it to a diesel engine airpath system, which is a well-known complex industrial system.
- Abstract(参考訳): 非線形力学(SINDy)アプローチのスパース同定は, 与えられた基底関数のスパース線形結合として動的モデルを同定する計測データに基づいて, 力学系の制御方程式を発見することができる。
SINDyにおける大きな課題は、多くの動的システムにとって適切なライブラリが自明ではないため、候補となる基底関数のセットであるライブラリの設計である。
そこで本研究では,スパース回帰手法とライブラリの新たな学習戦略を組み合わせたSINDy with Library Optimization Mechanism (SINDy-LOM)を提案する。
提案手法では,基本関数はパラメータ化される。
SINDy-LOMアプローチは、2層最適化アーキテクチャを含む: データ駆動モデルが候補基底関数の疎線型結合として抽出される内層と、再帰的長期(RLT)予測精度の観点から基底関数が最適化される外層。
得られたSINDy-LOMモデルは,提案手法が擬似モデルを生成するため,高い解釈性とユーザビリティを有する。
ライブラリ最適化機構は、ユーザの負担を大幅に軽減する。
RLTパースペクティブは、従来のSINDyアプローチと比較して結果モデルの信頼性を向上させる。
提案手法の有効性は,よく知られた複合産業システムであるディーゼルエンジンエアパスシステムに適用することによって実証される。
関連論文リスト
- Optimization-Free Diffusion Model -- A Perturbation Theory Approach [12.756355928431455]
拡散モデルは、生成モデリングの強力なフレームワークとして登場した。
最適化フリーとフォワードSDEフリーの両方の代替手法を提案する。
本研究では,高次元ボルツマン分布と実世界のデータセットに対する本手法の有効性を示す。
論文 参考訳(メタデータ) (2025-05-29T17:02:26Z) - Leveraging Importance Sampling to Detach Alignment Modules from Large Language Models [50.19188692497892]
伝統的なアライメント手法では、しばしば大きな事前訓練されたモデルを再訓練する必要がある。
本稿では,アライメント処理を重要サンプリングの一種として形式化する新しいtextitResidual Alignment Model (textitRAM) を提案する。
本稿では,トークンレベルの復号化を反復的に行う再サンプリングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2025-05-26T08:53:02Z) - Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing [58.52119063742121]
独自の予測と潜在的にノイズの多いラベルを使ってモデルをトレーニングすることは、モデルパフォーマンスを改善するためのよく知られた戦略である。
本稿では,モデルの予測と提供ラベルを最適に組み合わせる方法について論じる。
我々の主な貢献は、現在のモデルの予測と与えられたラベルを組み合わせたベイズ最適集約関数の導出である。
論文 参考訳(メタデータ) (2025-05-21T07:16:44Z) - Recursive Gaussian Process State Space Model [6.43820634528778]
動作領域とGPハイパーパラメータの両方に適応可能な新しいオンラインGPSSM法を提案する。
ポイントを誘導するオンライン選択アルゴリズムは、情報的基準に基づいて開発され、軽量な学習を実現する。
合成データセットと実世界のデータセットの総合的な評価は,提案手法の精度,計算効率,適応性を示す。
論文 参考訳(メタデータ) (2024-11-22T02:22:59Z) - Optimal Transport-Based Displacement Interpolation with Data Augmentation for Reduced Order Modeling of Nonlinear Dynamical Systems [0.0]
本稿では,複雑なシステムにおける非線形力学の表現を強化するために,最適輸送理論と変位を利用した新しいリダクション・オーダー・モデル(ROM)を提案する。
複雑なシステム挙動の予測における精度と効率の向上を示し、計算物理学や工学における幅広い応用の可能性を示している。
論文 参考訳(メタデータ) (2024-11-13T16:29:33Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - FAStEN: An Efficient Adaptive Method for Feature Selection and Estimation in High-Dimensional Functional Regressions [7.674715791336311]
本稿では,スパース関数オン・ファンクション回帰問題において特徴選択を行うための,新しい,柔軟な,超効率的なアプローチを提案する。
我々はそれをスカラー・オン・ファンクション・フレームワークに拡張する方法を示す。
AOMIC PIOP1による脳MRIデータへの応用について述べる。
論文 参考訳(メタデータ) (2023-03-26T19:41:17Z) - Learning Sparse Nonlinear Dynamics via Mixed-Integer Optimization [3.7565501074323224]
分散整数最適化 (MIO) を用いたSINDyDy問題の厳密な定式化を提案し, 分散制約付き回帰問題を数秒で証明可能な最適性を求める。
正確なモデル発見における我々のアプローチの劇的な改善について説明するとともに、よりサンプリング効率が高く、ノイズに耐性があり、物理的制約の緩和にも柔軟である。
論文 参考訳(メタデータ) (2022-06-01T01:43:45Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
動的モード分解は、動的データを研究するための非常に効率的な手法であることが証明された。
このアプローチの適用は、利用可能なデータが不完全である場合に問題となる。
本稿では,森-Zwanzig分解の1次近似を考察し,対応する最適化問題を記述し,勾配に基づく最適化法を用いて解く。
論文 参考訳(メタデータ) (2022-02-23T11:23:59Z) - Approximate Bayesian Optimisation for Neural Networks [6.921210544516486]
モデル選択の重要性を強調するために、機械学習アルゴリズムを自動化するための一連の作業が行われた。
理想主義的な方法で解析的トラクタビリティと計算可能性を解決する必要性は、効率と適用性を確保することを可能にしている。
論文 参考訳(メタデータ) (2021-08-27T19:03:32Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。