論文の概要: Interpretable inverse design of optical multilayer thin films based on extended neural adjoint and regression activation mapping
- arxiv url: http://arxiv.org/abs/2507.18644v1
- Date: Thu, 10 Jul 2025 02:19:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-03 20:19:02.822945
- Title: Interpretable inverse design of optical multilayer thin films based on extended neural adjoint and regression activation mapping
- Title(参考訳): 拡張ニューラルアジョイントと回帰アクティベーションマッピングに基づく光多層薄膜の解釈的逆設計
- Authors: Sungjun Kim, Jungho Kim,
- Abstract要約: 拡張ニューラルアドジョイント(ENA)フレームワークは、OMTの人工知能支援逆設計の6つの重要な基準を満たす。
我々は,OMTのための新しいフォワードニューラルネットワークアーキテクチャを提案し,既存のニューラルアジョイント損失関数に物質損失関数を導入する。
- 参考スコア(独自算出の注目度): 2.252752942877162
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an extended neural adjoint (ENA) framework, which meets six key criteria for artificial intelligence-assisted inverse design of optical multilayer thin films (OMTs): accuracy, efficiency, diversity, scalability, flexibility, and interpretability. To enhance the scalability of the existing neural adjoint method, we present a novel forward neural network architecture for OMTs and introduce a material loss function into the existing neural adjoint loss function, facilitating the exploration of material configurations of OMTs. Furthermore, we present the detailed formulation of the regression activation mapping for the presented forward neural network architecture (F-RAM), a feature visualization method aimed at improving interpretability. We validated the efficacy of the material loss by conducting an ablation study, where each component of the loss function is systematically removed and evaluated. The results indicated that the inclusion of the material loss significantly improves accuracy and diversity. To substantiate the performance of the ENA-based inverse design, we compared it against the residual network-based global optimization network (Res-GLOnet). The ENA yielded the OMT solutions of an inverse design with higher accuracy and better diversity compared to the Res-GLOnet. To demonstrate the interpretability, we applied F-RAM to diverse OMT structures with similar optical properties, obtained by the proposed ENA method. We showed that distributions of feature importance for various OMT structures exhibiting analogous optical properties are consistent, despite variations in material configurations, layer number, and thicknesses. Furthermore, we demonstrate the flexibility of the ENA method by restricting the initial layer of OMTs to SiO2 and 100 nm.
- Abstract(参考訳): 我々は,光学多層膜(OMT)の人工知能による逆設計において,精度,効率,多様性,スケーラビリティ,柔軟性の6つの重要な基準を満たす拡張ニューラルアジョイント(ENA)フレームワークを提案する。
既存のニューラルアジョイント法のスケーラビリティを高めるため,OMTのための新しいフォワードニューラルネットワークアーキテクチャを提案し,既存のニューラルアジョイント損失関数に物質損失関数を導入し,OMTの材料構成の探索を容易にする。
さらに,解釈性の向上を目的とした特徴可視化手法であるF-RAMの回帰アクティベーション・アクティベーション・マッピングの詳細な定式化について述べる。
本研究は, 損失関数の各成分を系統的に除去し, 評価するアブレーション研究により, 材料損失の有効性を検証した。
その結果, 材料損失の包含は, 精度と多様性を著しく向上させることがわかった。
ENAをベースとした逆設計の性能を評価するため、残余ネットワークベースのグローバル最適化ネットワーク(Res-GLOnet)と比較した。
ENAはRes-GLOnetよりも高精度で多様性の高い逆設計のOMTソリューションを得た。
解釈可能性を示すために,提案手法により得られた同様の光学特性を持つ多種多様なOMT構造にF-RAMを適用した。
材料構成, 層数, 厚みが異なるにもかかわらず, 類似光学特性を示す様々なOMT構造物の特徴分布は一貫していることを示した。
さらに,OMTの初期層をSiO2,100nmに制限することで,ENA法の柔軟性を示す。
関連論文リスト
- The Finite Element Neural Network Method: One Dimensional Study [0.0]
本研究は,ペトロフ・ガレルキン法(ペトロフ・ガレルキン法)の枠組みにおける有限要素ニューラルネットワーク法(FENNM)を紹介する。
FENNMは、微分方程式の重み付け残差を近似するために畳み込み演算を用いる。
これにより、従来の有限要素法(FEM)の解法と同様に、強制項と自然境界条件を損失関数に統合することができる。
論文 参考訳(メタデータ) (2025-01-21T21:39:56Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Enhancing GANs with Contrastive Learning-Based Multistage Progressive Finetuning SNN and RL-Based External Optimization [0.0]
Gene Adversarial Networks (GAN) は画像合成の最前線にあり、特に病理学のような医学分野において、データの不足、患者のプライバシー、クラス不均衡といった課題に対処している。
GANでは、トレーニングの不安定性、モード崩壊、バイナリ分類からのフィードバック不足がパフォーマンスを損なう可能性がある。
これらの課題は、複雑な特徴表現と空間的詳細のため、特に高解像度の病理像で顕著である。
論文 参考訳(メタデータ) (2024-09-30T14:39:56Z) - 1-bit Quantized On-chip Hybrid Diffraction Neural Network Enabled by Authentic All-optical Fully-connected Architecture [4.594367761345624]
本研究では,行列乗算をDNNに組み込んだ新しいアーキテクチャであるHybrid Diffraction Neural Network(HDNN)を紹介する。
特異位相変調層と振幅変調層を用いて、トレーニングされたニューラルネットワークは、数字認識タスクにおいて96.39%と89%の顕著な精度を示した。
論文 参考訳(メタデータ) (2024-04-11T02:54:17Z) - Hallmarks of Optimization Trajectories in Neural Networks: Directional Exploration and Redundancy [75.15685966213832]
最適化トラジェクトリのリッチな方向構造をポイントワイズパラメータで解析する。
トレーニング中のスカラーバッチノルムパラメータは,ネットワーク全体のトレーニング性能と一致していることを示す。
論文 参考訳(メタデータ) (2024-03-12T07:32:47Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
レイヤワイドフィードバックフィードバック(LFP)は、ニューラルネットワークのような予測器のための新しいトレーニング原則である。
LFPはそれぞれの貢献に基づいて個々のニューロンに報酬を分解する。
提案手法は,ネットワークの有用な部分と有害な部分の弱体化を両立させる手法である。
論文 参考訳(メタデータ) (2023-08-23T10:48:28Z) - Affine Transformation Edited and Refined Deep Neural Network for
Quantitative Susceptibility Mapping [10.772763441035945]
定量的サセプティビリティマッピング(QSM)のための、エンドツーエンドのAFfine Transformation Edited and Refined (AFTER)ディープニューラルネットワークを提案する。
任意の取得方向と空間分解能が最大0.6mm等方性に対して最も高い。
論文 参考訳(メタデータ) (2022-11-25T07:54:26Z) - RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional
Network for Retinal OCT Fluid Segmentation [3.57686754209902]
OCTガイド下治療には網膜液の定量化が必要である。
RetiFluidNetと呼ばれる新しい畳み込みニューラルアーキテクチャは、多クラス網膜流体セグメンテーションのために提案されている。
モデルは、テクスチャ、コンテキスト、エッジといった特徴の階層的な表現学習の恩恵を受ける。
論文 参考訳(メタデータ) (2022-09-26T07:18:00Z) - A Robust Backpropagation-Free Framework for Images [47.97322346441165]
画像データに対するエラーカーネル駆動型アクティベーションアライメントアルゴリズムを提案する。
EKDAAは、ローカルに派生したエラー送信カーネルとエラーマップを導入することで達成される。
結果は、識別不能なアクティベーション機能を利用するEKDAAトレーニングCNNに対して提示される。
論文 参考訳(メタデータ) (2022-06-03T21:14:10Z) - SymNMF-Net for The Symmetric NMF Problem [62.44067422984995]
我々は,Symmetric NMF問題に対するSymNMF-Netと呼ばれるニューラルネットワークを提案する。
各ブロックの推測は最適化の単一イテレーションに対応することを示す。
実世界のデータセットに関する実証的な結果は、我々のSymNMF-Netの優位性を示している。
論文 参考訳(メタデータ) (2022-05-26T08:17:39Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Kernel-Based Smoothness Analysis of Residual Networks [85.20737467304994]
ResNets(Residual Networks)は、これらの強力なモダンアーキテクチャの中でも際立っている。
本稿では,2つのモデル,すなわちResNetsが勾配よりもスムーズな傾向を示す。
論文 参考訳(メタデータ) (2020-09-21T16:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。