VAMPIRE: Uncovering Vessel Directional and Morphological Information from OCTA Images for Cardiovascular Disease Risk Factor Prediction
- URL: http://arxiv.org/abs/2507.20017v1
- Date: Sat, 26 Jul 2025 17:12:44 GMT
- Title: VAMPIRE: Uncovering Vessel Directional and Morphological Information from OCTA Images for Cardiovascular Disease Risk Factor Prediction
- Authors: Lehan Wang, Hualiang Wang, Chubin Ou, Lushi Chen, Yunyi Liang, Xiaomeng Li,
- Abstract summary: We propose a novel multi-purpose paradigm of CVD risk assessment that jointly performs CVD risk and CVD-related condition prediction.<n>We introduce OCTA-CVD, the first OCTA dataset for CVD risk assessment, and a Vessel-Aware Mamba-based Prediction model with Informative Enhancement (VAMPIRE) based on OCTA enface images.
- Score: 7.586356391440063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cardiovascular disease (CVD) remains the leading cause of death worldwide, requiring urgent development of effective risk assessment methods for timely intervention. While current research has introduced non-invasive and efficient approaches to predict CVD risk from retinal imaging with deep learning models, the commonly used fundus photographs and Optical Coherence Tomography (OCT) fail to capture detailed vascular features critical for CVD assessment compared with OCT angiography (OCTA) images. Moreover, existing methods typically classify CVD risk only as high or low, without providing a deeper analysis on CVD-related blood factor conditions, thus limiting prediction accuracy and clinical utility. As a result, we propose a novel multi-purpose paradigm of CVD risk assessment that jointly performs CVD risk and CVD-related condition prediction, aligning with clinical experiences. Based on this core idea, we introduce OCTA-CVD, the first OCTA dataset for CVD risk assessment, and a Vessel-Aware Mamba-based Prediction model with Informative Enhancement (VAMPIRE) based on OCTA enface images. Our proposed model aims to extract crucial vascular characteristics through two key components: (1) a Mamba-Based Directional (MBD) Module that captures fine-grained vascular trajectory features and (2) an Information-Enhanced Morphological (IEM) Module that incorporates comprehensive vessel morphology knowledge. Experimental results demonstrate that our method can surpass standard classification backbones, OCTA-based detection methods, and ophthalmologic foundation models. Our codes and the collected OCTA-CVD dataset are available at https://github.com/xmed-lab/VAMPIRE.
Related papers
- Whole-body Representation Learning For Competing Preclinical Disease Risk Assessment [10.200639509943443]
We propose a whole-body self-supervised representation learning method for the preclinical disease risk assessment.<n>This approach outperforms whole-body radiomics in multiple diseases, including cardiovascular disease (CVD), type 2 diabetes (T2D), chronic obstructive pulmonary disease (COPD), and chronic kidney disease (CKD)<n>The results indicate the potential of whole-body representations as a standalone screening modality and as part of a multi-modal framework within clinical for early personalized risk stratification.
arXiv Detail & Related papers (2025-08-04T11:20:31Z) - Adaptable Cardiovascular Disease Risk Prediction from Heterogeneous Data using Large Language Models [70.64969663547703]
AdaCVD is an adaptable CVD risk prediction framework built on large language models extensively fine-tuned on over half a million participants from the UK Biobank.<n>It addresses key clinical challenges across three dimensions: it flexibly incorporates comprehensive yet variable patient information; it seamlessly integrates both structured data and unstructured text; and it rapidly adapts to new patient populations using minimal additional data.
arXiv Detail & Related papers (2025-05-30T14:42:02Z) - FedCVD: The First Real-World Federated Learning Benchmark on Cardiovascular Disease Data [52.55123685248105]
Cardiovascular diseases (CVDs) are currently the leading cause of death worldwide, highlighting the critical need for early diagnosis and treatment.
Machine learning (ML) methods can help diagnose CVDs early, but their performance relies on access to substantial data with high quality.
This paper presents the first real-world FL benchmark for cardiovascular disease detection, named FedCVD.
arXiv Detail & Related papers (2024-10-28T02:24:01Z) - A Joint Representation Using Continuous and Discrete Features for Cardiovascular Diseases Risk Prediction on Chest CT Scans [12.652540031719571]
We propose a novel joint representation that integrates discrete quantitative biomarkers and continuous deep features extracted from chest CT scans.
Our method substantially improves CVD risk predictive performance and offers individual contribution analysis of each biomarker.
arXiv Detail & Related papers (2024-10-24T10:06:45Z) - Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life.
This study demonstrates the potential of retinal optical coherence tomography ( OCT) imaging combined with fundus photographs for identifying future adverse cardiac events.
We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not.
arXiv Detail & Related papers (2024-10-18T12:37:51Z) - Predicting risk of cardiovascular disease using retinal OCT imaging [40.71667870702634]
Cardiovascular diseases (CVD) are the leading cause of death globally.<n>Optical coherence tomography ( OCT) has gained recognition as a potential tool for early CVD risk prediction.<n>We investigated the potential of OCT as an additional imaging technique to predict future CVD events.
arXiv Detail & Related papers (2024-03-26T14:42:46Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
Lung cancer is a leading cause of cancer mortality globally, highlighting the importance of understanding its mortality risks to design effective therapies.
The National Lung Screening Trial (NLST) employed computed tomography texture analysis to quantify the mortality risks of lung cancer patients.
We propose a novel Penalized Deep Partially Linear Cox Model (Penalized DPLC), which incorporates the SCAD penalty to select important texture features and employs a deep neural network to estimate the nonparametric component of the model.
arXiv Detail & Related papers (2023-03-09T15:38:16Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - COVI-AgentSim: an Agent-based Model for Evaluating Methods of Digital
Contact Tracing [68.68882022019272]
COVI-AgentSim is an agent-based compartmental simulator based on virology, disease progression, social contact networks, and mobility patterns.
We use COVI-AgentSim to perform cost-adjusted analyses comparing no DCT to: 1) standard binary contact tracing (BCT) that assigns binary recommendations based on binary test results; and 2) a rule-based method for feature-based contact tracing (FCT) that assigns a graded level of recommendation based on diverse individual features.
arXiv Detail & Related papers (2020-10-30T00:47:01Z) - An explainable XGBoost-based approach towards assessing the risk of
cardiovascular disease in patients with Type 2 Diabetes Mellitus [1.761604268733064]
Cardiovascular Disease (CVD) is an important cause of disability and death among individuals with Diabetes Mellitus (DM)
The aim of the present study is to develop and evaluate an explainable personalized risk prediction model for the fatal or non-fatal CVD incidence in T2DM individuals.
arXiv Detail & Related papers (2020-09-14T12:19:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.