Whole-body Representation Learning For Competing Preclinical Disease Risk Assessment
- URL: http://arxiv.org/abs/2508.02307v1
- Date: Mon, 04 Aug 2025 11:20:31 GMT
- Title: Whole-body Representation Learning For Competing Preclinical Disease Risk Assessment
- Authors: Dmitrii Seletkov, Sophie Starck, Ayhan Can Erdur, Yundi Zhang, Daniel Rueckert, Rickmer Braren,
- Abstract summary: We propose a whole-body self-supervised representation learning method for the preclinical disease risk assessment.<n>This approach outperforms whole-body radiomics in multiple diseases, including cardiovascular disease (CVD), type 2 diabetes (T2D), chronic obstructive pulmonary disease (COPD), and chronic kidney disease (CKD)<n>The results indicate the potential of whole-body representations as a standalone screening modality and as part of a multi-modal framework within clinical for early personalized risk stratification.
- Score: 10.200639509943443
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reliable preclinical disease risk assessment is essential to move public healthcare from reactive treatment to proactive identification and prevention. However, image-based risk prediction algorithms often consider one condition at a time and depend on hand-crafted features obtained through segmentation tools. We propose a whole-body self-supervised representation learning method for the preclinical disease risk assessment under a competing risk modeling. This approach outperforms whole-body radiomics in multiple diseases, including cardiovascular disease (CVD), type 2 diabetes (T2D), chronic obstructive pulmonary disease (COPD), and chronic kidney disease (CKD). Simulating a preclinical screening scenario and subsequently combining with cardiac MRI, it sharpens further the prediction for CVD subgroups: ischemic heart disease (IHD), hypertensive diseases (HD), and stroke. The results indicate the translational potential of whole-body representations as a standalone screening modality and as part of a multi-modal framework within clinical workflows for early personalized risk stratification. The code is available at https://github.com/yayapa/WBRLforCR/
Related papers
- VAMPIRE: Uncovering Vessel Directional and Morphological Information from OCTA Images for Cardiovascular Disease Risk Factor Prediction [7.586356391440063]
We propose a novel multi-purpose paradigm of CVD risk assessment that jointly performs CVD risk and CVD-related condition prediction.<n>We introduce OCTA-CVD, the first OCTA dataset for CVD risk assessment, and a Vessel-Aware Mamba-based Prediction model with Informative Enhancement (VAMPIRE) based on OCTA enface images.
arXiv Detail & Related papers (2025-07-26T17:12:44Z) - MOSCARD -- Causal Reasoning and De-confounding for Multimodal Opportunistic Screening of Cardiovascular Adverse Events [3.206697649226124]
Major Adverse Cardiovascular Events (MACE) remain the leading cause of mortality globally, as reported in the Global Disease Study 2021.<n>Opportunistic screening leverages data collected from routine health check-ups and multimodal data can play a key role to identify at-risk individuals.<n>We propose a novel predictive modeling framework - MOSCARD, multimodal causal reasoning with co-attention to align two distinct modalities and simultaneously mitigate bias and confounders in opportunistic risk estimation.
arXiv Detail & Related papers (2025-06-23T22:28:37Z) - Adaptable Cardiovascular Disease Risk Prediction from Heterogeneous Data using Large Language Models [70.64969663547703]
AdaCVD is an adaptable CVD risk prediction framework built on large language models extensively fine-tuned on over half a million participants from the UK Biobank.<n>It addresses key clinical challenges across three dimensions: it flexibly incorporates comprehensive yet variable patient information; it seamlessly integrates both structured data and unstructured text; and it rapidly adapts to new patient populations using minimal additional data.
arXiv Detail & Related papers (2025-05-30T14:42:02Z) - A Joint Representation Using Continuous and Discrete Features for Cardiovascular Diseases Risk Prediction on Chest CT Scans [12.652540031719571]
We propose a novel joint representation that integrates discrete quantitative biomarkers and continuous deep features extracted from chest CT scans.
Our method substantially improves CVD risk predictive performance and offers individual contribution analysis of each biomarker.
arXiv Detail & Related papers (2024-10-24T10:06:45Z) - Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life.
This study demonstrates the potential of retinal optical coherence tomography ( OCT) imaging combined with fundus photographs for identifying future adverse cardiac events.
We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not.
arXiv Detail & Related papers (2024-10-18T12:37:51Z) - Early Risk Assessment Model for ICA Timing Strategy in Unstable Angina Patients Using Multi-Modal Machine Learning [5.070772577047069]
Invasive coronary arteriography (ICA) is recognized as the gold standard for diagnosing cardiovascular diseases, including unstable angina (UA)
Unlike myocardial infarction, UA does not have specific indicators like ST-segment deviation or cardiac enzymes, making risk assessment complex.
Our study aims to enhance the early risk assessment for UA patients by utilizing machine learning algorithms.
arXiv Detail & Related papers (2024-08-08T07:24:28Z) - Petal-X: Human-Centered Visual Explanations to Improve Cardiovascular Risk Communication [1.4613744540785565]
This work describes the design and implementation of Petal-X, a novel tool to support clinician-patient shared decision-making.
Petal-X relies on a novel visualization, Petal Product Plots, and a tailor-made global surrogate model of SCORE2, whose fidelity is comparable to that of the GSCs used in clinical practice.
arXiv Detail & Related papers (2024-06-26T18:48:50Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
Tuberculosis (TB) is a major global health threat, causing millions of deaths annually.
Computer-aided tuberculosis diagnosis (CTD) using deep learning has shown promise, but progress is hindered by limited training data.
We establish a large-scale dataset, namely the Tuberculosis X-ray (TBX11K) dataset, which contains 11,200 chest X-ray (CXR) images with corresponding bounding box annotations for TB areas.
This dataset enables the training of sophisticated detectors for high-quality CTD.
arXiv Detail & Related papers (2023-07-06T08:27:48Z) - Diagnosis Uncertain Models For Medical Risk Prediction [80.07192791931533]
We consider a patient risk model which has access to vital signs, lab values, and prior history but does not have access to a patient's diagnosis.
We show that such all-cause' risk models have good generalization across diagnoses but have a predictable failure mode.
We propose a fix for this problem by explicitly modeling the uncertainty in risk prediction coming from uncertainty in patient diagnoses.
arXiv Detail & Related papers (2023-06-29T23:36:04Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
Lung cancer is a leading cause of cancer mortality globally, highlighting the importance of understanding its mortality risks to design effective therapies.
The National Lung Screening Trial (NLST) employed computed tomography texture analysis to quantify the mortality risks of lung cancer patients.
We propose a novel Penalized Deep Partially Linear Cox Model (Penalized DPLC), which incorporates the SCAD penalty to select important texture features and employs a deep neural network to estimate the nonparametric component of the model.
arXiv Detail & Related papers (2023-03-09T15:38:16Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.