論文の概要: Discrete Gaussian Vector Fields On Meshes
- arxiv url: http://arxiv.org/abs/2507.20024v1
- Date: Sat, 26 Jul 2025 17:43:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:56.681418
- Title: Discrete Gaussian Vector Fields On Meshes
- Title(参考訳): メッシュ上の離散ガウスベクトル場
- Authors: Michael Gillan, Stefan Siegert, Ben Youngman,
- Abstract要約: この研究は、ベクトル値データに対する離散固有ガウス過程が、メッシュに関して定義された離散微分作用素から発展可能であることを示す。
これらのモデルが高調波流を捕捉し、境界条件を組み込んだり、非定常データをモデル化できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Though the underlying fields associated with vector-valued environmental data are continuous, observations themselves are discrete. For example, climate models typically output grid-based representations of wind fields or ocean currents, and these are often downscaled to a discrete set of points. By treating the area of interest as a two-dimensional manifold that can be represented as a triangular mesh and embedded in Euclidean space, this work shows that discrete intrinsic Gaussian processes for vector-valued data can be developed from discrete differential operators defined with respect to a mesh. These Gaussian processes account for the geometry and curvature of the manifold whilst also providing a flexible and practical formulation that can be readily applied to any two-dimensional mesh. We show that these models can capture harmonic flows, incorporate boundary conditions, and model non-stationary data. Finally, we apply these models to downscaling stationary and non-stationary gridded wind data on the globe, and to inference of ocean currents from sparse observations in bounded domains.
- Abstract(参考訳): ベクトル値の環境データに関連する基礎分野は連続的であるが、観測そのものは離散的である。
例えば、気候モデルは通常、風力場や海流のグリッドベースの表現を出力し、これらはしばしば個別の点にダウンスケールされる。
関心領域を三角メッシュとして表現しユークリッド空間に埋め込まれる2次元多様体として扱うことにより、ベクトル値データに対する離散固有ガウス過程がメッシュに関して定義された離散微分作用素から発展できることを示す。
これらのガウス過程は多様体の幾何学と曲率を説明できる一方で、任意の2次元メッシュに容易に適用できるフレキシブルで実践的な定式化を提供する。
これらのモデルが高調波流を捕捉し、境界条件を組み込んだり、非定常データをモデル化できることを示す。
最後に、これらのモデルを適用し、地球上の定常および非定常の格子状風速データをダウンスケールさせ、境界領域におけるスパース観測から海流を推定する。
関連論文リスト
- Bayesian Circular Regression with von Mises Quasi-Processes [57.88921637944379]
本研究では、円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
後部推論のために,高速ギブズサンプリングに寄与するストラトノビッチ様拡張法を導入する。
本研究では,このモデルを用いて風向予測と走行歩行周期のパーセンテージを関節角度の関数として適用する実験を行った。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Topological Obstructions and How to Avoid Them [22.45861345237023]
局所最適性は特異点や不正確な次数や巻数によって生じる可能性があることを示す。
本稿では,データポイントを幾何学空間上のマルチモーダル分布にマッピングするフローベースモデルを提案する。
論文 参考訳(メタデータ) (2023-12-12T18:56:14Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
グラフ埋め込みの信頼性は、連続空間の幾何がグラフ構造とどの程度一致しているかに依存する。
我々は、この問題を解決することができる、ソフト多様体と呼ばれる新しい多様体のクラスを導入する。
グラフ埋め込みにソフト多様体を用いることで、複雑なデータセット上のデータ解析における任意のタスクを追求するための連続空間を提供できる。
論文 参考訳(メタデータ) (2023-11-29T12:48:33Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Diffusion Probabilistic Fields [42.428882785136295]
距離空間上で定義された連続関数上の分布を学習する拡散モデルである拡散確率場(DPF)を導入する。
我々は,非ユークリッド距離空間上で定義されたフィールド上の分布のモデル化に加えて,DPFが2次元画像や3次元幾何学などの異なるモダリティを効果的に扱うことを実証的に示す。
論文 参考訳(メタデータ) (2023-03-01T01:37:24Z) - Convolutional Filtering on Sampled Manifolds [122.06927400759021]
サンプル多様体上の畳み込みフィルタリングは連続多様体フィルタリングに収束することを示す。
本研究は,ナビゲーション制御の問題点を実証的に明らかにした。
論文 参考訳(メタデータ) (2022-11-20T19:09:50Z) - ManiFlow: Implicitly Representing Manifolds with Normalizing Flows [145.9820993054072]
正規化フロー(NF)は、複雑な実世界のデータ分布を正確にモデル化することが示されているフレキシブルな明示的な生成モデルである。
摂動分布から標本を与えられた多様体上の最も可能性の高い点を復元する最適化目的を提案する。
最後に、NFsの明示的な性質、すなわち、ログのような勾配とログのような勾配から抽出された表面正規化を利用する3次元点雲に焦点を当てる。
論文 参考訳(メタデータ) (2022-08-18T16:07:59Z) - Sinusoidal Sensitivity Calculation for Line Segment Geometries [0.0]
本稿では,Kernらによって提案された正弦波コイル感度モデルに対する閉形式解を提案する。
これにより、地道デビアスデータセットに対する様々なシミュレーションバイアス場の正確な計算が可能になる。
論文 参考訳(メタデータ) (2022-08-05T09:30:55Z) - The Manifold Scattering Transform for High-Dimensional Point Cloud Data [16.500568323161563]
本稿では,自然システムにおけるデータセットへの多様体散乱変換の実装のための実践的スキームを提案する。
本手法は信号の分類や多様体の分類に有効であることを示す。
論文 参考訳(メタデータ) (2022-06-21T02:15:00Z) - Isometric Gaussian Process Latent Variable Model for Dissimilarity Data [0.0]
本稿では、潜在変数がモデル化データの距離と位相の両方を尊重する確率モデルを提案する。
このモデルは、対距離の観測に基づく変分推論によって推定される。
論文 参考訳(メタデータ) (2020-06-21T08:56:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。