論文の概要: Topological Obstructions and How to Avoid Them
- arxiv url: http://arxiv.org/abs/2312.07529v1
- Date: Tue, 12 Dec 2023 18:56:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-13 14:37:26.324375
- Title: Topological Obstructions and How to Avoid Them
- Title(参考訳): トポロジカル障害とその回避方法
- Authors: Babak Esmaeili, Robin Walters, Heiko Zimmermann, Jan-Willem van de
Meent
- Abstract要約: 局所最適性は特異点や不正確な次数や巻数によって生じる可能性があることを示す。
本稿では,データポイントを幾何学空間上のマルチモーダル分布にマッピングするフローベースモデルを提案する。
- 参考スコア(独自算出の注目度): 22.45861345237023
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Incorporating geometric inductive biases into models can aid interpretability
and generalization, but encoding to a specific geometric structure can be
challenging due to the imposed topological constraints. In this paper, we
theoretically and empirically characterize obstructions to training encoders
with geometric latent spaces. We show that local optima can arise due to
singularities (e.g. self-intersection) or due to an incorrect degree or winding
number. We then discuss how normalizing flows can potentially circumvent these
obstructions by defining multimodal variational distributions. Inspired by this
observation, we propose a new flow-based model that maps data points to
multimodal distributions over geometric spaces and empirically evaluate our
model on 2 domains. We observe improved stability during training and a higher
chance of converging to a homeomorphic encoder.
- Abstract(参考訳): 幾何学的帰納的バイアスをモデルに組み込むことは解釈可能性や一般化に役立つが、特定の幾何学的構造へのエンコーディングは位相的制約が課されるため困難である。
本稿では,幾何学的潜在空間を持つエンコーダの訓練に対する障害を理論的に経験的に特徴付ける。
局所最適性は特異点(例えば自己切断)や不正確な次数や巻数によって生じる可能性があることを示す。
次に,多モード変動分布の定義により,フローの正規化がこれらの障害を回避できる可能性について論じる。
この観察に触発されて,データポイントを幾何学空間上のマルチモーダル分布にマッピングし,実験的に2つの領域でモデルを評価するフローベースモデルを提案する。
トレーニング中の安定性の向上と,同相エンコーダに収束する確率の向上を観察した。
関連論文リスト
- Geometric Trajectory Diffusion Models [58.853975433383326]
生成モデルは3次元幾何学システムの生成において大きな可能性を示してきた。
既存のアプローチは静的構造のみで動作し、物理系は常に自然界において動的であるという事実を無視する。
本研究では3次元軌跡の時間分布をモデル化する最初の拡散モデルである幾何軌道拡散モデル(GeoTDM)を提案する。
論文 参考訳(メタデータ) (2024-10-16T20:36:41Z) - Decoder ensembling for learned latent geometries [15.484595752241122]
我々は、関連する予想多様体上の測地線を容易に計算する方法を示す。
このシンプルで信頼性が高く、簡単に使える潜在測地に一歩近づきます。
論文 参考訳(メタデータ) (2024-08-14T12:35:41Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Latent Traversals in Generative Models as Potential Flows [113.4232528843775]
我々は,学習された動的ポテンシャルランドスケープを持つ潜在構造をモデル化することを提案する。
物理、最適輸送、神経科学にインスパイアされたこれらの潜在的景観は、物理的に現実的な偏微分方程式として学習される。
本手法は,最先端のベースラインよりも定性的かつ定量的に歪んだ軌跡を実現する。
論文 参考訳(メタデータ) (2023-04-25T15:53:45Z) - Geometric Scattering on Measure Spaces [12.0756034112778]
測度空間上での幾何散乱の一般統一モデルを導入する。
未知多様体をランダムにサンプリングして得られる有限測度空間を考える。
本稿では, 関連するグラフ散乱変換が基礎多様体上の散乱変換を近似するデータ駆動グラフを構築するための2つの方法を提案する。
論文 参考訳(メタデータ) (2022-08-17T22:40:09Z) - Moser Flow: Divergence-based Generative Modeling on Manifolds [49.04974733536027]
Moser Flow (MF) は連続正規化フロー(CNF)ファミリーにおける新しい生成モデルのクラスである
MFは、訓練中にODEソルバを介して呼び出しやバックプロパゲートを必要としない。
一般曲面からのサンプリングにおけるフローモデルの利用を初めて実演する。
論文 参考訳(メタデータ) (2021-08-18T09:00:24Z) - A Unifying and Canonical Description of Measure-Preserving Diffusions [60.59592461429012]
ユークリッド空間における測度保存拡散の完全なレシピは、最近、いくつかのMCMCアルゴリズムを単一のフレームワークに統合した。
我々は、この構成を任意の多様体に改善し一般化する幾何学理論を開発する。
論文 参考訳(メタデータ) (2021-05-06T17:36:55Z) - Continuous normalizing flows on manifolds [0.342658286826597]
本稿では,最近導入されたニューラルODEと連続正規化フローを任意の滑らかな多様体に拡張する方法について述べる。
本稿では,これらの空間上のベクトル場をパラメータ化するための一般的な手法を提案する。
論文 参考訳(メタデータ) (2021-03-14T15:35:19Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
オフライン強化学習アプローチは、近近法と不確実性認識法に分けられる。
本研究では,この2つを潜在変動モデルに組み合わせることのメリットを実証する。
提案したメトリクスは、分布サンプルのアウトの品質と、データ内のサンプルの不一致の両方を測定します。
論文 参考訳(メタデータ) (2021-02-22T19:42:40Z) - Generative Model without Prior Distribution Matching [26.91643368299913]
変分オートエンコーダ(VAE)とその変分は、いくつかの先行分布を満たすために低次元の潜在表現を学習することによって古典的な生成モデルである。
我々は、先行変数に適合させるのではなく、先行変数が埋め込み分布と一致するように提案する。
論文 参考訳(メタデータ) (2020-09-23T09:33:24Z) - Neural Ordinary Differential Equations on Manifolds [0.342658286826597]
近年、ニューラルODEに基づくユークリッド空間の正規化フローは大きな可能性を秘めているが、同じ制限を被っている。
ベクトル場がこれらの空間上の可逆写像の柔軟なクラスをパラメータ化するための一般的なフレームワークを提供する方法を示す。
論文 参考訳(メタデータ) (2020-06-11T17:56:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。