論文の概要: Sparse Equation Matching: A Derivative-Free Learning for General-Order Dynamical Systems
- arxiv url: http://arxiv.org/abs/2507.20072v1
- Date: Sat, 26 Jul 2025 22:05:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:56.86507
- Title: Sparse Equation Matching: A Derivative-Free Learning for General-Order Dynamical Systems
- Title(参考訳): スパース方程式マッチング:汎用力学系における微分自由学習
- Authors: Jiaqiang Li, Jianbin Tan, Xueqin Wang,
- Abstract要約: 本稿では,共通定式化の下で既存の方程式探索手法を含む統一的なフレームワークであるスパース方程式マッチング(SEM)を提案する。
SEMはグリーン関数を用いた積分ベースのスパース回帰法を導入し、微分作用素の微分自由推定を可能にする。
次に、脳-コンピュータインタフェース実験において52名の被験者から収集された複数の眼球運動タスク中に記録された脳波(EEG)データにSEMを適用した。
- 参考スコア(独自算出の注目度): 0.358439716487063
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Equation discovery is a fundamental learning task for uncovering the underlying dynamics of complex systems, with wide-ranging applications in areas such as brain connectivity analysis, climate modeling, gene regulation, and physical system simulation. However, many existing approaches rely on accurate derivative estimation and are limited to first-order dynamical systems, restricting their applicability to real-world scenarios. In this work, we propose sparse equation matching (SEM), a unified framework that encompasses several existing equation discovery methods under a common formulation. SEM introduces an integral-based sparse regression method using Green's functions, enabling derivative-free estimation of differential operators and their associated driving functions in general-order dynamical systems. The effectiveness of SEM is demonstrated through extensive simulations, benchmarking its performance against derivative-based approaches. We then apply SEM to electroencephalographic (EEG) data recorded during multiple oculomotor tasks, collected from 52 participants in a brain-computer interface experiment. Our method identifies active brain regions across participants and reveals task-specific connectivity patterns. These findings offer valuable insights into brain connectivity and the underlying neural mechanisms.
- Abstract(参考訳): 方程式発見は複雑なシステムの基盤となる力学を明らかにするための基本的な学習課題であり、脳の接続解析、気候モデリング、遺伝子制御、物理系シミュレーションなどの分野に幅広く応用されている。
しかし、既存の多くのアプローチは正確な微分推定に依存しており、一階の力学系に限られており、現実のシナリオに適用可能である。
本研究では,共通定式化の下で既存の方程式探索手法を含む統一的なフレームワークであるスパース方程式マッチング(SEM)を提案する。
SEMはグリーン関数を用いた積分ベースのスパース回帰法を導入し、一般の力学系における微分作用素とその関連する駆動関数の微分自由推定を可能にする。
SEMの有効性は広範なシミュレーションを通じて実証され、その性能を微分ベースのアプローチに対してベンチマークする。
次に、脳-コンピュータインタフェース実験において52名の被験者から収集された複数の眼球運動タスク中に記録された脳波(EEG)データにSEMを適用した。
本手法は参加者間で活動する脳領域を同定し,タスク固有の接続パターンを明らかにする。
これらの発見は、脳のコネクティビティと基礎となる神経機構に関する貴重な洞察を与えてくれる。
関連論文リスト
- DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
本稿では,事前学習したFFN層を計算ブロックに分割することで,分散化を実現するDSMoEを提案する。
我々は,Sigmoid アクティベーションとストレートスルー推定器を用いた適応型エキスパートルーティングを実装し,トークンがモデル知識の様々な側面に柔軟にアクセスできるようにする。
LLaMAモデルを用いた実験により、DSMoEは既存のプルーニング法やMoE法に比べて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-02-18T02:37:26Z) - Reconstruction of dynamic systems using genetic algorithms with dynamic search limits [0.0]
時系列データを用いて動的システムの制御方程式を推定するために進化的計算手法が提案される。
本研究の主な貢献は、最小限のコントリビューションを持つ用語を除去するための遺伝的アルゴリズムの適切な修正と、局所的なオプティマから逃れるメカニズムである。
その結果,0.22未満の積分正方形誤差と,全系に対して0.99のR-二乗決定係数を用いて再構成を行った。
論文 参考訳(メタデータ) (2024-12-03T22:58:25Z) - Generative Modeling of Neural Dynamics via Latent Stochastic Differential Equations [1.5467259918426441]
本稿では,生体神経系の計算モデル構築のためのフレームワークを提案する。
我々は、微分ドリフトと拡散関数を持つ結合微分方程式系を用いる。
これらのハイブリッドモデルは,刺激によって誘発される神経および行動応答の予測において,競争力を発揮することを示す。
論文 参考訳(メタデータ) (2024-12-01T09:36:03Z) - Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - SINDyG: Sparse Identification of Nonlinear Dynamical Systems from Graph-Structured Data [0.27624021966289597]
グラフ構造化データ(SINDyG)から動的システムのスパース同定法を開発した。
SINDyGはネットワーク構造をスパース回帰に組み込んで、基礎となるネットワーク力学を説明するモデルパラメータを識別する。
本実験は, ネットワーク力学の精度向上と簡易性を検証した。
論文 参考訳(メタデータ) (2024-09-02T17:51:37Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
本研究では,高次元経験データから力学系を学習する手法を提案する。
我々は、システムの複数の異なるインスタンスからデータが利用できる設定に焦点を当てる。
我々は、単純な理論的分析と、合成および実世界のデータセットに関する広範な実験を通して行動を研究する。
論文 参考訳(メタデータ) (2023-06-21T07:52:07Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Inference of Stochastic Dynamical Systems from Cross-Sectional
Population Data [8.905677748354364]
生物化学、疫学、金融数学、その他多くの科学分野において、個体群や時間経過データから力学系の駆動方程式を推測することは重要である。
本研究では, 微分方程式に基づいて, 人口の確率密度の進化を記述するフォッカー・プランク方程式を推定し, 計算的に推定する。
そして、USDLアプローチに従って、Fokker-Planck方程式を適切なテスト関数の集合に投影し、方程式の線形系に変換する。
論文 参考訳(メタデータ) (2020-12-09T14:02:29Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Physics-informed learning of governing equations from scarce data [14.95055620484844]
本研究は, 偏微分方程式(PDE)を, 希少かつノイズの多い表現データから検出する物理インフォームド・ディープラーニング・フレームワークを提案する。
本手法の有効性とロバスト性は, 数値的にも実験的にも, 種々のPDEシステムの発見において実証される。
結果として得られる計算フレームワークは、実用的な応用における閉形式モデル発見の可能性を示している。
論文 参考訳(メタデータ) (2020-05-05T22:13:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。