論文の概要: Physics-informed learning of governing equations from scarce data
- arxiv url: http://arxiv.org/abs/2005.03448v3
- Date: Wed, 13 Jan 2021 21:26:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 13:49:49.784124
- Title: Physics-informed learning of governing equations from scarce data
- Title(参考訳): 希少データからの制御方程式の物理インフォームド学習
- Authors: Zhao Chen, Yang Liu and Hao Sun
- Abstract要約: 本研究は, 偏微分方程式(PDE)を, 希少かつノイズの多い表現データから検出する物理インフォームド・ディープラーニング・フレームワークを提案する。
本手法の有効性とロバスト性は, 数値的にも実験的にも, 種々のPDEシステムの発見において実証される。
結果として得られる計算フレームワークは、実用的な応用における閉形式モデル発見の可能性を示している。
- 参考スコア(独自算出の注目度): 14.95055620484844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Harnessing data to discover the underlying governing laws or equations that
describe the behavior of complex physical systems can significantly advance our
modeling, simulation and understanding of such systems in various science and
engineering disciplines. This work introduces a novel physics-informed deep
learning framework to discover governing partial differential equations (PDEs)
from scarce and noisy data for nonlinear spatiotemporal systems. In particular,
this approach seamlessly integrates the strengths of deep neural networks for
rich representation learning, physics embedding, automatic differentiation and
sparse regression to (1) approximate the solution of system variables, (2)
compute essential derivatives, as well as (3) identify the key derivative terms
and parameters that form the structure and explicit expression of the PDEs. The
efficacy and robustness of this method are demonstrated, both numerically and
experimentally, on discovering a variety of PDE systems with different levels
of data scarcity and noise accounting for different initial/boundary
conditions. The resulting computational framework shows the potential for
closed-form model discovery in practical applications where large and accurate
datasets are intractable to capture.
- Abstract(参考訳): 複雑な物理システムの振る舞いを記述する基礎となる法則や方程式を発見するためにデータを活用すれば、様々な科学や工学の分野において、そのようなシステムのモデリング、シミュレーション、理解を著しく前進させることができる。
本研究は, 非線形時空間系における偏微分方程式 (PDE) の希少・雑音データから決定する物理インフォームド深層学習フレームワークを提案する。
特に、このアプローチは、リッチな表現学習、物理埋め込み、自動微分、スパース回帰のためのディープニューラルネットワークの強みを、(1)システム変数の解を近似し、(2)本質的な微分を計算し、(3)pdesの構造と明示的な表現を形成する主要な微分項とパラメータを特定するためにシームレスに統合する。
本手法の有効性とロバスト性は,データ不足度が異なる様々なpdeシステムと初期・境界条件のノイズ計算について,数値的および実験的に証明した。
得られた計算フレームワークは、大規模で正確なデータセットをキャプチャーできる実用的なアプリケーションにおいて、クローズドフォームモデル発見の可能性を示している。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Governing equation discovery of a complex system from snapshots [11.803443731299677]
スナップショットからの微分方程式のスパース同定 (Sparse Identification of Differential Equations from Snapshots (SpIDES)) と呼ばれるデータ駆動型シミュレーションフリーフレームワークを導入する。
SpIDESは、高度な機械学習技術を利用してスナップショットから複雑なシステムの制御方程式を発見する。
2つの潜在的な井戸に閉じ込められた過剰損傷ランゲヴィン系の支配方程式を同定し,SpIDESの有効性とロバスト性を検証した。
論文 参考訳(メタデータ) (2024-10-22T04:55:12Z) - Neural Differential Algebraic Equations [6.100037457394823]
微分代数方程式(DAE)のデータ駆動モデリングに適したニューラル微分代数方程式(NDAE)を提案する。
提案したNDAEs抽象化は、関連するシステム理論データ駆動モデリングタスクに適していることを示す。
論文 参考訳(メタデータ) (2024-03-19T17:43:57Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - D-CIPHER: Discovery of Closed-form Partial Differential Equations [80.46395274587098]
D-CIPHERは人工物の測定に頑健であり、微分方程式の新しい、非常に一般的なクラスを発見できる。
さらに,D-CIPHERを効率的に探索するための新しい最適化手法であるCoLLieを設計する。
論文 参考訳(メタデータ) (2022-06-21T17:59:20Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Encoding physics to learn reaction-diffusion processes [18.187800601192787]
物理構造を符号化するディープラーニングフレームワークが,PDEシステム体制に関する様々な問題に適用可能であることを示す。
物理を符号化する結果の学習パラダイムは、広範囲な数値実験により、高い精度、堅牢性、解釈可能性、一般化可能性を示す。
論文 参考訳(メタデータ) (2021-06-09T03:02:20Z) - Hard Encoding of Physics for Learning Spatiotemporal Dynamics [8.546520029145853]
既知の物理知識を強制的にエンコードして,データ駆動的な学習を容易にするディープラーニングアーキテクチャを提案する。
物理学の強制符号化メカニズムは、ペナルティに基づく物理学による学習と根本的に異なるが、ネットワークが与えられた物理学に厳密に従うことを保証する。
論文 参考訳(メタデータ) (2021-05-02T21:40:39Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Data-driven Identification of 2D Partial Differential Equations using
extracted physical features [0.0]
本稿では,2次元データから方程式に係わる項を発見するためのML手法を提案する。
このアイデアは、異なる順序の時間微分を持つ2次元方程式を発見し、モデルが訓練されていない新しい基礎物理学を識別することを可能にする。
その結果, 3次元畳み込みニューラルネットワーク(3D CNN)で検出された特徴と比較して, 先行知識に基づいて抽出した特徴のロバスト性を示した。
論文 参考訳(メタデータ) (2020-10-20T21:06:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。