論文の概要: Inference of Stochastic Dynamical Systems from Cross-Sectional
Population Data
- arxiv url: http://arxiv.org/abs/2012.05055v1
- Date: Wed, 9 Dec 2020 14:02:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-16 02:13:13.052991
- Title: Inference of Stochastic Dynamical Systems from Cross-Sectional
Population Data
- Title(参考訳): 断面人口データによる確率力学系の推定
- Authors: Anastasios Tsourtis, Yannis Pantazis, Ioannis Tsamardinos
- Abstract要約: 生物化学、疫学、金融数学、その他多くの科学分野において、個体群や時間経過データから力学系の駆動方程式を推測することは重要である。
本研究では, 微分方程式に基づいて, 人口の確率密度の進化を記述するフォッカー・プランク方程式を推定し, 計算的に推定する。
そして、USDLアプローチに従って、Fokker-Planck方程式を適切なテスト関数の集合に投影し、方程式の線形系に変換する。
- 参考スコア(独自算出の注目度): 8.905677748354364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inferring the driving equations of a dynamical system from population or
time-course data is important in several scientific fields such as
biochemistry, epidemiology, financial mathematics and many others. Despite the
existence of algorithms that learn the dynamics from trajectorial measurements
there are few attempts to infer the dynamical system straight from population
data. In this work, we deduce and then computationally estimate the
Fokker-Planck equation which describes the evolution of the population's
probability density, based on stochastic differential equations. Then,
following the USDL approach, we project the Fokker-Planck equation to a proper
set of test functions, transforming it into a linear system of equations.
Finally, we apply sparse inference methods to solve the latter system and thus
induce the driving forces of the dynamical system. Our approach is illustrated
in both synthetic and real data including non-linear, multimodal stochastic
differential equations, biochemical reaction networks as well as mass cytometry
biological measurements.
- Abstract(参考訳): 生物化学、疫学、金融数学、その他多くの科学分野において、個体群や時間経過データから力学系の駆動方程式を推測することは重要である。
軌道計測から力学を学習するアルゴリズムが存在するにもかかわらず、人口データから直接力学系を推測する試みはほとんどない。
本研究では,確率密度の変化を記述するフォッカー・プランク方程式を確率微分方程式に基づいて推定し,計算的に推定する。
そして、USDLアプローチに従って、Fokker-Planck方程式を適切なテスト関数の集合に投影し、方程式の線形系に変換する。
最後に,後者の系の解法にスパース推論法を適用し,力学系の駆動力を誘導する。
本手法は, 非線形, マルチモーダル確率微分方程式, 生化学的反応ネットワーク, 質量サイトメトリー生物学的測定など, 合成データと実データの両方で示される。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems [3.1484174280822845]
非線形・雑音・非自律力学系に対する擬似常微分方程式(ODE)モデルを求めることに集中する。
提案手法は,SINDyとSINDy(非線形力学のスパース同定)を結合し,スパースODEの時間変化係数をモデル化する。
論文 参考訳(メタデータ) (2024-10-02T23:00:00Z) - Physics-Informed Solution of The Stationary Fokker-Plank Equation for a
Class of Nonlinear Dynamical Systems: An Evaluation Study [0.0]
Fokker-Planck(FP)方程式の正確な解析解は、力学系の限られた部分集合に対してのみ利用できる。
その可能性を評価するために、FP方程式を解くために、データフリーで物理インフォームドニューラルネットワーク(PINN)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-25T13:17:34Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Discovering stochastic dynamical equations from biological time series data [0.0]
本稿では,変数の時系列データを入力とし,微分状態方程式を出力する方程式探索を提案する。
時系列データのみから,正しい方程式を復元し,その安定性を正確に推定できることを示す。
魚の学習と単細胞移動という2つの実世界のデータセット上で,本手法を実証する。
論文 参考訳(メタデータ) (2022-05-05T13:44:24Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Extracting Governing Laws from Sample Path Data of Non-Gaussian
Stochastic Dynamical Systems [4.527698247742305]
我々は、利用可能なデータから非ガウスL'evy雑音の方程式を推定し、動的挙動を合理的に予測する。
理論的枠組みを確立し、非対称なL'evyジャンプ測度、ドリフト、拡散を計算する数値アルゴリズムを設計する。
この方法は、利用可能なデータセットから規制法則を発見し、複雑なランダム現象のメカニズムを理解するのに有効なツールとなる。
論文 参考訳(メタデータ) (2021-07-21T14:50:36Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Linear embedding of nonlinear dynamical systems and prospects for
efficient quantum algorithms [74.17312533172291]
有限非線形力学系を無限線型力学系(埋め込み)にマッピングする方法を述べる。
次に、有限線型系 (truncation) による結果の無限線型系を近似するアプローチを検討する。
論文 参考訳(メタデータ) (2020-12-12T00:01:10Z) - Learning Stochastic Behaviour from Aggregate Data [52.012857267317784]
集約データから非線形ダイナミクスを学習することは、各個人の完全な軌道が利用できないため、難しい問題である。
本稿では,Fokker Planck Equation (FPE) の弱い形式を用いて,サンプル形式のデータの密度変化を記述する手法を提案する。
このようなサンプルベースのフレームワークでは、偏微分方程式(PDE)FPEを明示的に解くことなく、集約データから非線形ダイナミクスを学習することができる。
論文 参考訳(メタデータ) (2020-02-10T03:20:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。