論文の概要: Blending data and physics for reduced-order modeling of systems with spatiotemporal chaotic dynamics
- arxiv url: http://arxiv.org/abs/2507.21299v1
- Date: Mon, 21 Jul 2025 21:32:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-30 17:08:55.259578
- Title: Blending data and physics for reduced-order modeling of systems with spatiotemporal chaotic dynamics
- Title(参考訳): 時空間カオス力学を持つ系の低次モデリングのためのブレンディングデータと物理
- Authors: Alex Guo, Michael D. Graham,
- Abstract要約: カオス力学のためのハイブリッドリダクションオーダーモデル(ROM)を開発した。
ROMはデータと物理から派生したFOMのベクトル場によって通知される。
豊富なデータ、不足データ、不正なFOMのシナリオでは、ハイブリッドアプローチは時系列予測を大幅に改善する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While data-driven techniques are powerful tools for reduced-order modeling of systems with chaotic dynamics, great potential remains for leveraging known physics (i.e. a full-order model (FOM)) to improve predictive capability. We develop a hybrid reduced order model (ROM), informed by both data and FOM, for evolving spatiotemporal chaotic dynamics on an invariant manifold whose coordinates are found using an autoencoder. This approach projects the vector field of the FOM onto the invariant manifold; then, this physics-derived vector field is either corrected using dynamic data, or used as a Bayesian prior that is updated with data. In both cases, the neural ordinary differential equation approach is used. We consider simulated data from the Kuramoto-Sivashinsky and complex Ginzburg-Landau equations. Relative to the data-only approach, for scenarios of abundant data, scarce data, and even an incorrect FOM (i.e. erroneous parameter values), the hybrid approach yields substantially improved time-series predictions.
- Abstract(参考訳): データ駆動技術はカオス力学を持つシステムの低次モデリングのための強力なツールであるが、予測能力を改善するために既知の物理(フルオーダーモデル(FOM))を活用する大きな可能性がある。
自動エンコーダを用いて座標が見つかる不変多様体上の時空間カオス力学を進化させるために,データとFOMの両方から情報を得るハイブリッドリダクションオーダーモデル(ROM)を開発した。
このアプローチは FOM のベクトル場を不変多様体に射影し、この物理学由来のベクトル場は動的データを用いて修正されるか、あるいはデータで更新されるベイズ事前として使用される。
どちらの場合も、ニューラル常微分方程式アプローチが用いられる。
倉本-シヴァシンスキー方程式と複素ギンズブルグ-ランダウ方程式のシミュレーションデータを考える。
データのみのアプローチでは、豊富なデータ、少ないデータ、不正なFOM(すなわち誤ったパラメータ値)のシナリオに対して、ハイブリッドアプローチは大幅に改善された時系列予測をもたらす。
関連論文リスト
- Data-Driven Prediction of Dynamic Interactions Between Robot Appendage and Granular Material [2.551529992410986]
別のデータ駆動型モデリング手法が提案され、特定の長さスケールでの粒状地形とのロボットの動きの相互作用に関する洞察を得ることができた。
このアプローチは,高忠実度シミュレーションデータのオフライン収集とスパース実験データの集合から得られるオフラインデータに基づいて,オンラインで使用することができる。
結果は、オンラインとオフラインの両方のフェーズにおいて、未知の複雑な地形におけるロボットのナビゲーションと探索を支援することが期待されている。
論文 参考訳(メタデータ) (2025-06-12T16:43:21Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
拡散モデル(DM)は、連続入力のための最先端の生成モデルを表す。
我々はtextbfphase space dynamics に基づく新しい生成モデリングフレームワークを提案する。
我々のフレームワークは、動的伝播の初期段階において、現実的なデータポイントを生成する能力を示す。
論文 参考訳(メタデータ) (2023-10-11T18:38:28Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Random Grid Neural Processes for Parametric Partial Differential
Equations [5.244037702157957]
我々はPDEのための空間確率物理の新しいクラスと深部潜伏モデルについて紹介する。
パラメトリックPDEの前方および逆問題を解場のガウス過程モデルの構築につながる方法で解く。
物理情報モデルにノイズのあるデータを原則的に組み込むことで、データの入手可能な問題に対する予測を改善する方法を示す。
論文 参考訳(メタデータ) (2023-01-26T11:30:56Z) - $Φ$-DVAE: Physics-Informed Dynamical Variational Autoencoders for Unstructured Data Assimilation [3.2873782624127843]
物理インフォームドな動的変分オートエンコーダ(Phi$-DVAE)を開発し、様々なデータストリームを時間進化物理系に埋め込む。
我々の手法は、非構造化データを潜在力学系に同化するために、潜在状態空間モデルのための標準的な非線形フィルタとVOEを組み合わせたものである。
変分ベイズフレームワークは、符号化、潜時状態、未知のシステムパラメータの合同推定に使用される。
論文 参考訳(メタデータ) (2022-09-30T17:34:48Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
動的モード分解は、動的データを研究するための非常に効率的な手法であることが証明された。
このアプローチの適用は、利用可能なデータが不完全である場合に問題となる。
本稿では,森-Zwanzig分解の1次近似を考察し,対応する最適化問題を記述し,勾配に基づく最適化法を用いて解く。
論文 参考訳(メタデータ) (2022-02-23T11:23:59Z) - Data-Driven Reduced-Order Modeling of Spatiotemporal Chaos with Neural
Ordinary Differential Equations [0.0]
本稿では,偏微分方程式のカオス力学を生かしたデータ駆動型還元次数モデリング手法を提案する。
次元の減少は周囲空間の予測と比較して性能を向上することがわかった。
低次元モデルでは、広い空間データに対する真の力学の短・長期統計レクリエーションに優れる。
論文 参考訳(メタデータ) (2021-08-31T20:00:33Z) - Low-Rank Hankel Tensor Completion for Traffic Speed Estimation [7.346671461427793]
交通状態推定問題に対する純粋にデータ駆動型かつモデルフリーなソリューションを提案する。
このテンソル構造に低ランクな仮定を課すことで、大域的パターンと未知の複素局所力学の両方を近似することができる。
本研究では,合成シミュレーションデータと実世界の高分解能データの両方について数値実験を行い,提案モデルの有効性と優位性を実証した。
論文 参考訳(メタデータ) (2021-05-21T00:08:06Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。