論文の概要: Conversations over Clicks: Impact of Chatbots on Information Search in Interdisciplinary Learning
- arxiv url: http://arxiv.org/abs/2507.21490v1
- Date: Tue, 29 Jul 2025 04:16:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-30 17:08:55.657678
- Title: Conversations over Clicks: Impact of Chatbots on Information Search in Interdisciplinary Learning
- Title(参考訳): クリックによる会話: 学際的学習におけるチャットボットが情報検索に与える影響
- Authors: Hannah Kim, Sergei L. Kosakovsky Pond, Stephen MacNeil,
- Abstract要約: 本研究では,生成型AI(GenAI)が学習者体験に与える影響について検討する。
eラーニング環境では、学習者は自分自身で複雑な情報空間をナビゲートする必要があることが多い。
- 参考スコア(独自算出の注目度): 1.489200532210589
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This full research paper investigates the impact of generative AI (GenAI) on the learner experience, with a focus on how learners engage with and utilize the information it provides. In e-learning environments, learners often need to navigate a complex information space on their own. This challenge is further compounded in interdisciplinary fields like bioinformatics, due to the varied prior knowledge and backgrounds. In this paper, we studied how GenAI influences information search in bioinformatics research: (1) How do interactions with a GenAI chatbot influence learner orienteering behaviors?; and (2) How do learners identify information scent in GenAI chatbot responses? We adopted an autoethnographic approach to investigate these questions. GenAI was found to support orienteering once a learning plan was established, but it was counterproductive prior to that. Moreover, traditionally value-rich information sources such as bullet points and related terms proved less effective when applied to GenAI responses. Information scents were primarily recognized through the presence or absence of prior knowledge of the domain. These findings suggest that GenAI should be adopted into e-learning environments with caution, particularly in interdisciplinary learning contexts.
- Abstract(参考訳): 本稿では,生成AI(GenAI)が学習者体験に与える影響について検討し,学習者が提供した情報をどのように活用するかに着目した。
eラーニング環境では、学習者は自分自身で複雑な情報空間をナビゲートする必要があることが多い。
この課題は、生物情報学のような学際的な分野において、様々な事前知識や背景のためにさらに複雑化している。
本稿では,GenAIが情報検索にどのように影響するかをバイオインフォマティクス研究で検討し,(1)学習者のオリエンテーリング行動にどのように影響するかを考察する。
; (2)学習者はどのようにしてGenAIチャットボット応答の情報を識別するか?
我々はこれらの質問を調査するために自己エスノグラフィーのアプローチを採用した。
学習計画が成立すると、GenAIはオリエンテーリングを支援することが判明したが、それ以前には非生産的であった。
さらに, 弾頭や関連用語などの従来の価値豊富な情報ソースは, GenAI応答に適用した場合, 効果が低かった。
ドメインの事前知識の有無によって、主に情報香りが認識された。
これらの結果から,GenAIは,特に学際的な学習環境において,注意深いeラーニング環境に導入されるべきであることが示唆された。
関連論文リスト
- From Recall to Reasoning: Automated Question Generation for Deeper Math Learning through Large Language Models [44.99833362998488]
先進数学のためのコンテンツ生成を最適化する第1ステップについて検討した。
我々は、GenAIがコース内容に関連する高品質な実践問題を生み出す能力について検討した。
論文 参考訳(メタデータ) (2025-05-17T08:30:10Z) - Engineering Educators' Perspectives on the Impact of Generative AI in Higher Education [4.06279597585806]
本研究は, 生産型AIの活用と展望について, 工学教育者を対象にした調査から得られた知見を報告する。
我々は、GenAIの利用と快適性、GenAIに対する全体的な視点、教育、学習、研究にGenAIを使うことの課題と潜在的害について質問し、彼らの教室でのGenAIの使用と統合に対するアプローチが、GenAIの経験とそれに対する認識に影響を与えているかどうかを検討した。
論文 参考訳(メタデータ) (2025-02-01T21:29:53Z) - Lessons for GenAI Literacy From a Field Study of Human-GenAI Augmentation in the Workplace [0.11704154007740832]
本研究では、製品開発、ソフトウェアエンジニアリング、デジタルコンテンツ作成という3つの機能にまたがるGenAIの使用を比較した。
発見は、GenAIの使用とユーザのコンピューティング知識のレベルにおいて、幅広いばらつきを示している。
論文 参考訳(メタデータ) (2025-02-01T21:26:31Z) - Early Adoption of Generative Artificial Intelligence in Computing Education: Emergent Student Use Cases and Perspectives in 2023 [38.83649319653387]
コンピュータ学生のGenAI利用と認識に関する先行研究は限られている。
私たちは、小さなエンジニアリングに焦点を当てたR1大学で、すべてのコンピュータサイエンス専攻を調査しました。
我々は,GenAIと教育に関する新たな議論に対する知見の影響について論じる。
論文 参考訳(メタデータ) (2024-11-17T20:17:47Z) - Misconceptions, Pragmatism, and Value Tensions: Evaluating Students' Understanding and Perception of Generative AI for Education [0.11704154007740832]
学生はこの技術のアーリーアダプターであり、非典型的手法で利用している。
学生は,1)GenAIの理解,2)GenAIの利用,3)教育における利用に関するメリット,欠点,倫理的問題について,その説明を求めた。
論文 参考訳(メタデータ) (2024-10-29T17:41:06Z) - Exploring Parent's Needs for Children-Centered AI to Support Preschoolers' Interactive Storytelling and Reading Activities [52.828843153565984]
AIベースのストーリーテリングと読書技術は、幼児の生活の中でますます普及しつつある。
本稿では,実践的なストーリーテリングや読書のシナリオでどのように機能するか,親,最も重要な利害関係者,経験,知覚について考察する。
我々の研究結果は、AIベースのストーリーテリングと読書技術は、より没入的で活発な相互作用を提供するが、一連の対話的でアルゴリズム的な課題のために、両親の期待を満たすことはできないことを示唆している。
論文 参考訳(メタデータ) (2024-01-24T20:55:40Z) - Asking for Knowledge: Training RL Agents to Query External Knowledge
Using Language [121.56329458876655]
グリッドワールドベースのQ-BabyAIとテキストベースのQ-TextWorldの2つの新しい環境を紹介した。
本稿では,意味のある知識を問うための言語コマンドを生成する「知識の探索(AFK)」エージェントを提案する。
論文 参考訳(メタデータ) (2022-05-12T14:20:31Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
心理学的好奇心は、探索と情報取得を通じて学習を強化するために、人間の知性において重要な役割を果たす。
人工知能(AI)コミュニティでは、人工好奇心は効率的な学習に自然な本質的な動機を与える。
CDLはますます人気を博し、エージェントは新たな知識を学習するために自己動機付けされている。
論文 参考訳(メタデータ) (2022-01-20T17:07:03Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
機械学習は、データのパターンを認識し、予測モデリングに使用するアルゴリズムの開発と応用に関係している。
ディープラーニングは、独自の機械学習のサブフィールドになっている。
生物学的研究の文脈において、ディープラーニングは高次元の生物学的データから新しい洞察を導き出すためにますます使われてきた。
論文 参考訳(メタデータ) (2021-05-29T21:02:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。