Domain Generalization and Adaptation in Intensive Care with Anchor Regression
- URL: http://arxiv.org/abs/2507.21783v1
- Date: Tue, 29 Jul 2025 13:09:41 GMT
- Title: Domain Generalization and Adaptation in Intensive Care with Anchor Regression
- Authors: Malte Londschien, Manuel Burger, Gunnar Rätsch, Peter Bühlmann,
- Abstract summary: We apply anchor regression and introduce anchor boosting to a large dataset comprising 400,000 patients from nine distinct ICU databases.<n>The methods appear robust to violations of theoretical assumptions, such as anchor exogeneity.<n>We propose a novel conceptual framework to quantify the utility of large external data datasets.
- Score: 10.409435948253845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The performance of predictive models in clinical settings often degrades when deployed in new hospitals due to distribution shifts. This paper presents a large-scale study of causality-inspired domain generalization on heterogeneous multi-center intensive care unit (ICU) data. We apply anchor regression and introduce anchor boosting, a novel, tree-based nonlinear extension, to a large dataset comprising 400,000 patients from nine distinct ICU databases. The anchor regularization consistently improves out-of-distribution performance, particularly for the most dissimilar target domains. The methods appear robust to violations of theoretical assumptions, such as anchor exogeneity. Furthermore, we propose a novel conceptual framework to quantify the utility of large external data datasets. By evaluating performance as a function of available target-domain data, we identify three regimes: (i) a domain generalization regime, where only the external model should be used, (ii) a domain adaptation regime, where refitting the external model is optimal, and (iii) a data-rich regime, where external data provides no additional value.
Related papers
- Detecting and Pruning Prominent but Detrimental Neurons in Large Language Models [68.57424628540907]
Large language models (LLMs) often develop learned mechanisms specialized to specific datasets.<n>We introduce a fine-tuning approach designed to enhance generalization by identifying and pruning neurons associated with dataset-specific mechanisms.<n>Our method employs Integrated Gradients to quantify each neuron's influence on high-confidence predictions, pinpointing those that disproportionately contribute to dataset-specific performance.
arXiv Detail & Related papers (2025-07-12T08:10:10Z) - Partial Transportability for Domain Generalization [56.37032680901525]
Building on the theory of partial identification and transportability, this paper introduces new results for bounding the value of a functional of the target distribution.<n>Our contribution is to provide the first general estimation technique for transportability problems.<n>We propose a gradient-based optimization scheme for making scalable inferences in practice.
arXiv Detail & Related papers (2025-03-30T22:06:37Z) - Generalization Capabilities of Neural Cellular Automata for Medical Image Segmentation: A Robust and Lightweight Approach [6.537479355990391]
U-Nets exhibit a significant decline in performance when tested on data that deviates from the training distribution.
This paper investigates the implications of utilizing models that are smaller by three orders of magnitude (i.e., x1000) compared to a conventional U-Net.
arXiv Detail & Related papers (2024-08-28T06:18:55Z) - Inference at the data's edge: Gaussian processes for modeling and inference under model-dependency, poor overlap, and extrapolation [0.0]
The Gaussian Process (GP) is a flexible non-linear regression approach.
It provides a principled approach to handling our uncertainty over predicted (counterfactual) values.
This is especially valuable under conditions of extrapolation or weak overlap.
arXiv Detail & Related papers (2024-07-15T05:09:50Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - Utilizing Weak-to-Strong Consistency for Semi-Supervised Glomeruli Segmentation [0.803784679671919]
We present a semi-supervised learning approach for glomeruli segmentation based on the weak-to-strong consistency framework validated on multiple real-world datasets.
Our experimental results on 3 independent datasets indicate superior performance of our approach as compared with existing supervised baseline models.
arXiv Detail & Related papers (2024-05-30T10:19:21Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Scalable Regularised Joint Mixture Models [2.0686407686198263]
In many applications, data can be heterogeneous in the sense of spanning latent groups with different underlying distributions.
We propose an approach for heterogeneous data that allows joint learning of (i) explicit multivariate feature distributions, (ii) high-dimensional regression models and (iii) latent group labels.
The approach is demonstrably effective in high dimensions, combining data reduction for computational efficiency with a re-weighting scheme that retains key signals even when the number of features is large.
arXiv Detail & Related papers (2022-05-03T13:38:58Z) - Unsupervised domain adaptation with non-stochastic missing data [0.6608945629704323]
We consider unsupervised domain adaptation (UDA) for classification problems in the presence of missing data in the unlabelled target domain.
Imputation is performed in a domain-invariant latent space and leverages indirect supervision from a complete source domain.
We show the benefits of jointly performing adaptation, classification and imputation on datasets.
arXiv Detail & Related papers (2021-09-16T06:37:07Z) - On the Benefits of Invariance in Neural Networks [56.362579457990094]
We show that training with data augmentation leads to better estimates of risk and thereof gradients, and we provide a PAC-Bayes generalization bound for models trained with data augmentation.
We also show that compared to data augmentation, feature averaging reduces generalization error when used with convex losses, and tightens PAC-Bayes bounds.
arXiv Detail & Related papers (2020-05-01T02:08:58Z) - A Unified Theory of Decentralized SGD with Changing Topology and Local
Updates [70.9701218475002]
We introduce a unified convergence analysis of decentralized communication methods.
We derive universal convergence rates for several applications.
Our proofs rely on weak assumptions.
arXiv Detail & Related papers (2020-03-23T17:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.