Utilizing Weak-to-Strong Consistency for Semi-Supervised Glomeruli Segmentation
- URL: http://arxiv.org/abs/2406.16900v1
- Date: Thu, 30 May 2024 10:19:21 GMT
- Title: Utilizing Weak-to-Strong Consistency for Semi-Supervised Glomeruli Segmentation
- Authors: Irina Zhang, Jim Denholm, Azam Hamidinekoo, Oskar Ålund, Christopher Bagnall, Joana Palés Huix, Michal Sulikowski, Ortensia Vito, Arthur Lewis, Robert Unwin, Magnus Soderberg, Nikolay Burlutskiy, Talha Qaiser,
- Abstract summary: We present a semi-supervised learning approach for glomeruli segmentation based on the weak-to-strong consistency framework validated on multiple real-world datasets.
Our experimental results on 3 independent datasets indicate superior performance of our approach as compared with existing supervised baseline models.
- Score: 0.803784679671919
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate segmentation of glomerulus instances attains high clinical significance in the automated analysis of renal biopsies to aid in diagnosing and monitoring kidney disease. Analyzing real-world histopathology images often encompasses inter-observer variability and requires a labor-intensive process of data annotation. Therefore, conventional supervised learning approaches generally achieve sub-optimal performance when applied to external datasets. Considering these challenges, we present a semi-supervised learning approach for glomeruli segmentation based on the weak-to-strong consistency framework validated on multiple real-world datasets. Our experimental results on 3 independent datasets indicate superior performance of our approach as compared with existing supervised baseline models such as U-Net and SegFormer.
Related papers
- Evaluating Vision Language Models (VLMs) for Radiology: A Comprehensive Analysis [4.803310914375717]
This study evaluates three vision-language foundation models (RAD-DINO, CheXagent, and BiomedCLIP) on their ability to capture fine-grained imaging features for radiology tasks.
The models were assessed across classification, segmentation, and regression tasks for pneumothorax and cardiomegaly on chest radiographs.
arXiv Detail & Related papers (2025-04-22T17:20:34Z) - Boosting Sclera Segmentation through Semi-supervised Learning with Fewer Labels [8.313448026908729]
This paper introduces a novel sclera segmentation framework that excels with limited labeled samples.
We employ a semi-supervised learning method that integrates domain-specific improvements and image-based spatial transformations to enhance segmentation performance.
arXiv Detail & Related papers (2025-01-13T23:38:49Z) - Optimized Vessel Segmentation: A Structure-Agnostic Approach with Small Vessel Enhancement and Morphological Correction [7.882674026364302]
We propose a structure-agnostic approach incorporating small vessel enhancement and morphological correction for multi-modality vessel segmentation.
Our approach achieves superior segmentation accuracy, generalization, and a 34.6% improvement in connectivity, underscoring its clinical potential.
arXiv Detail & Related papers (2024-11-22T08:38:30Z) - Weakly supervised deep learning model with size constraint for prostate cancer detection in multiparametric MRI and generalization to unseen domains [0.90668179713299]
We show that the model achieves on-par performance with strong fully supervised baseline models.
We also observe a performance decrease for both fully supervised and weakly supervised models when tested on unseen data domains.
arXiv Detail & Related papers (2024-11-04T12:24:33Z) - Toward Generalizable Multiple Sclerosis Lesion Segmentation Models [0.0]
This study aims to develop models that generalize across diverse evaluation datasets.
We used all high-quality publicly-available MS lesion segmentation datasets on which we systematically trained a state-of-the-art UNet++ architecture.
arXiv Detail & Related papers (2024-10-25T15:21:54Z) - Multi-OCT-SelfNet: Integrating Self-Supervised Learning with Multi-Source Data Fusion for Enhanced Multi-Class Retinal Disease Classification [2.5091334993691206]
Development of a robust deep-learning model for retinal disease diagnosis requires a substantial dataset for training.
The capacity to generalize effectively on smaller datasets remains a persistent challenge.
We've combined a wide range of data sources to improve performance and generalization to new data.
arXiv Detail & Related papers (2024-09-17T17:22:35Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
We generate a dataset of whole-body CT scans with $142$ voxel-level labels for 533 volumes providing comprehensive anatomical coverage.
Our proposed procedure does not rely on manual annotation during the label aggregation stage.
We release our trained unified anatomical segmentation model capable of predicting $142$ anatomical structures on CT data.
arXiv Detail & Related papers (2023-07-25T09:48:13Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - Ensembling Handcrafted Features with Deep Features: An Analytical Study
for Classification of Routine Colon Cancer Histopathological Nuclei Images [13.858624044986815]
We have used F1-measure, Precision, Recall, AUC, and Cross-Entropy Loss to analyse the performance of our approaches.
We observed from the results that the DL features ensemble bring a marked improvement in the overall performance of the model.
arXiv Detail & Related papers (2022-02-22T06:48:50Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.